

| $\circ$   |
|-----------|
| Ē         |
| $\supset$ |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |

Sonderprofile

| ALUTRONIC IN KÜRZE                                   | 3   |
|------------------------------------------------------|-----|
| Über unsLeistungsübersicht                           |     |
| Produktübersicht                                     |     |
| Metallbearbeitung                                    |     |
| Eloxieren / Chromatieren                             | 8   |
| Vormontage                                           | 9   |
| SONDERPROFILE                                        | 11  |
| Technische und wirtschaftliche Vorteile              |     |
| Beispiele von Sonderprofilquerschnitten              | 13  |
|                                                      |     |
|                                                      |     |
| STANDARDPROFILE                                      | 15  |
| - für PCB Level Halbleiter                           |     |
| - mit versenkter Montagefläche                       |     |
| - einseitig verrippt<br>- für Fremdbelüftung         |     |
| - fur Fremabelattang                                 |     |
| Gehäuse                                              |     |
| KÜHLKÖRPER PCB MONTAGE                               | 67  |
| - für Mehrfachmontage                                | ~ - |
| Schraubbare Kühlkörper für Einzelmontage             |     |
| Lötbare Kühlkörper für Einzelmontage                 | 78  |
| Steckbare Kühkörper für Einzelmontage                |     |
| Klebbare Kühlkörper für Einzelmontage                | 94  |
| POWERBLOCS                                           | 97  |
| Stiftkühlkörper Übersicht                            |     |
| Stiftkühlkörper - eckig<br>Stiftkühlkörper - rund    |     |
|                                                      |     |
| KÜHLSYSTEME                                          | 113 |
| Lüfteraggregate aus Stiftkühlkörpern                 | 114 |
| Lüfteraggregate aus Lamellenprofilen                 | 117 |
|                                                      |     |
| ISOLIERUNG + WÄRMELEITUNG                            | 119 |
| Isolier- und Wärmeleitfolien                         |     |
| GlimmerscheibenAluminium-Oxidscheiben                |     |
| Isolierkappen und -schläuche                         |     |
| Isolierbuchsen                                       |     |
| Wärmeleitpaste                                       |     |
| BEFESTIGUNG                                          | 137 |
| Montage-Clipse                                       |     |
| Distanzbolzen - Gewinde Innen / Innen                |     |
| Distanzbolzen - Gewinde Innen / Außen                |     |
| Distanzbolzen - Gewinde Außen / Außen  Distanzrollen |     |
| Wärmeleitkleber                                      |     |
| INFORMATION                                          | 167 |
| Technische Grundlagen                                |     |
| Ihre Ansprechpartner bei Alutronic                   |     |
| Distributoren / Vertriebsnetz                        |     |
|                                                      |     |
|                                                      |     |
| Artikelnamenverzeichnis                              | 179 |







Ihre Entwärmungsprobleme hätten wir gerne! Besuchen Sie uns auch online für weitere Informationen und Produkte!

## Inhaltsverzeichnis

| Über uns                 | 4 |
|--------------------------|---|
| Leistungsübersicht       | 5 |
| Produktübersicht         | 6 |
| Metallbearbeitung        | 7 |
| Eloxieren / Chromatieren | 8 |
| Vormontage               | S |





**Seit 1977** 

# ALUTRONIC SOLUTIONS FOR COOL RESULTS

- -erfahren
- -schnell
- -kompetent
- -zuverlässig

Sollten Sie auf der Suche nach Lösungen in diesem Katalog nichts passendes finden, dann rufen Sie uns an.

Wir erweitern ständig unser Angebot. Besuchen Sie uns auch im Internet.



familiengeführt



miteinander



schnell + präzise



teilautomatisier



breites Lager



konstruktiv



zertifiziert



sichere Qualität



serviceorientiert



gut ausgebildet



sozial engagiert



umweltbewusst

Nur selten ist der Kühlkörper jenes Bauteil, an welches sich die anderen Komponenten im System anpassen. In der Regel ist es umgekehrt. Es können sich viele Anforderungen an den Kühlkörper stellen:

- Wie muss der spezifische Wärmewiderstand sein?
- Wieviel Bauraum bietet das System?
- Gibt es ein Standard-Kühlkörperprofil oder braucht man eine Sonderlösung?
- Und viele mehr...

Alutronic unterstützt Sie tatkräftig auf dem Weg zu Ihrem passenden Standardprodukt oder Ihrer eigenen, individuellen Lösung; persönlich vor Ort oder telefonisch.

Unser hauseigenes Angebot wird ergänzt durch ein weitreichendes, professionelles Netzwerk im Bereich Oberflächenbearbeitung, Belüftung, Steckverbindungen, Gehäuse und EMV-Schutz.

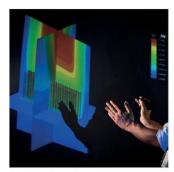


zerspanen



eloxieren




montieren



beraten

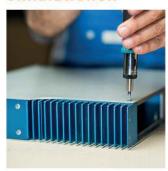


Logistiklösungen



Simulationen




Vorkonfektion



Folienzuschnitt



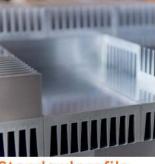
Beratung vor Ort



Prototypenbau



RthK-Rechner Online




Profilfilter Online

- -sehr breites Produktspektrum
- -gut sortiertes Lager
- -ständige Erweiterung unserer Artikelvielfalt
- -Logistik-Dienstleistungen wie Pufferlager, Mehrweg- Tauschverpackung



Sonderprofile



Standardprofile



Sehäuseprofile



Powerblocs



Lüfteraggregate



Silikonfolien

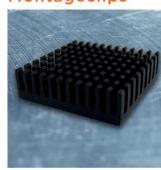


Distanzbolzen



Montageclips




PCB Kühlkörper Schraubmontage



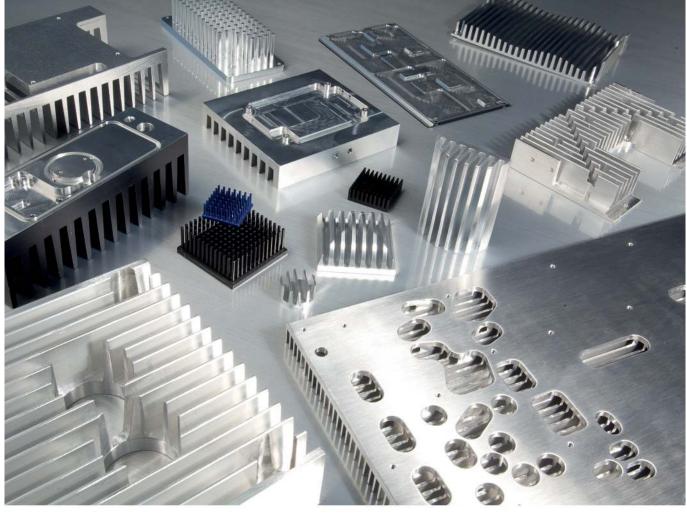
PCB Kühlkörper Lötmontage



PCB Kühlkörper Steckmontage



PCB Kühlkörper Klebmontage




- -moderner, umfangreicher CNC-Maschinenpark
- -erfahrene Fachkräfte für Aluminiumbearbeitung
- -konstante Fertigungspräzision
- -effiziente Produktionsplanung
- -wirtschaftliche Herstellung Ihrer Produkte! (ab Losgröße 1)











Eine Eloxalbeschichtung bietet Ihren Bauteilen Oberflächenschutz, verbesserte Wärmeabstrahlung, elektrische Isolierung und dekorative Lösungen.



### Seit 1989 veredeln wir Oberflächen mit:

- Sicherheit für Mensch und Umwelt
- Qualität durch Erfahrung + Kompetenz
- Geschwindigkeit durch Automation und effiziente Prozesse







#### Wir überzeugen durch:

- 25 Jahre Erfahrung in Galvanotechnik
- Vollautomatische Eloxalstraße
- Modernste Wasserwiederaufbereitung
- Eigener Gestellbau
- Lohneloxalservice

#### Für Sie bieten wir:

- Eloxieren bis 1700 mm Länge
- Eloxalschichtstärken bis 25  $\mu m$
- Chromatieren nach RoHS
- Lohneloxal Ihrer Aluminiumteile



Für die weitere Integration der Kühlkörper in Ihre Anwendung führt Alutronic für Sie auf Wunsch die Montage von mechanischen Komponenten durch.

Montageteile: Distanzbolzen, Clipse, Schrauben, Lüfter, Gewindeeinsätze, Wärmeleitmaterialien, Federn etc.







#### **Inhaltsverzeichnis**


| Technische und wirtschaftliche Vorteile | 12 |
|-----------------------------------------|----|
| Beispiele von Sonderprofilauerschnitten | 13 |

Seit 1977 bietet Alutronic neben seinem Angebot an Standard Kühlkörper- und Gehäuseprofilen auch kundenspezifische Aluminiumprofile an. Über 400 Sonderprofile sind in diesem Zeitraum entstanden und haben unseren Kunden entscheidende technische und wirtschaftliche Vorteile gebracht.

Im weiteren erfahren Sie über die entscheidenden Vorteile von Sonderprofilen und erhalten einige Beispiele. Fragen? Wir helfen Ihnen gerne. Rufen Sie uns an unter +49 2353-915-5



Alutronic bearbeitet mit modernster CNC-Doppelspindel-Technologie mittlere und große Serien schnell, präzise und wirtschaftlich.



Alutronic liefert in individuellen Mehrweg-Tauschverpackungs-systemen, abgestimmt auf Dimensionen und Lieferlose.

- ALUTRONIC SOLUTIONS FOR COOL RESULTS
- Materialreduzierung und reduzierte mechanische Bearbeitung durch z.B. fertig gepresste Schraubkanäle
- Einschubnuten für Leiterplatten oder sonstige Montagefunktionen
- Verbesserte Kühlleistung durch thermische Optimierung der Montage- und Konvektionsoberfläche auf den spezifischen Anwendungsfall
- Integration von Sockeln verbessert thermischen Übergang (Sockel z.B. als Ersatz für Gap Pads, bei zu großem Abstand Leiterplatte/Bauteil/Kühlkörper oder für den Fall, dass Bauteile um die Wärmequelle herum thermisch isoliert werden müssen -> Peltiertechnik)
- Kühlkörper- und Gehäusewände in einem Teil
- Geringe Investitionskosten, anteilige Werkzeugkosten für Strangpressprofile deutlich geringer als z.B. Gusswerkzeuge
- Mindestpressmengen beginnen bei 500 kg
- Bevorratung des Profilmaterials bei Rahmenverträgen oder von beigestelltem Material
- Kostenreduzierung bei Oberflächenveredelung (Eloxieren / Chromatieren) auch für Profilstangen möglich
- Kurze Realisierungszeiten für Werkzeugbau über Bemusterung bis zur Serienreife







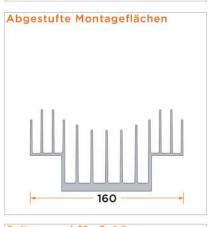




















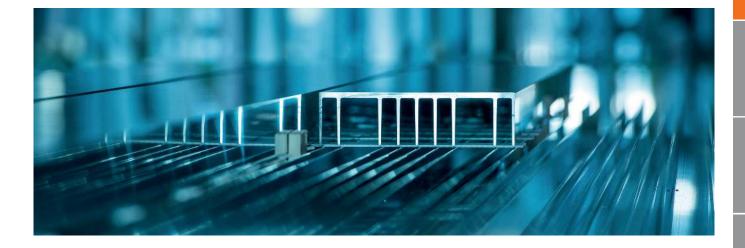













Der schnellste Weg zu Ihrem passenden Standardprofil: Der ALUTRONIC PROFIL-FILTER unter www.alutronic.de/produkte/kuehlkoerper-profile

#### **Inhaltsverzeichnis**

| - für PCB Level Halbleiter     | 16 |
|--------------------------------|----|
| - mit versenkter Montagefläche | 22 |
| - einseitig verrippt           | 28 |
| - für Fremdbelüftung           | 51 |
| Diverse                        | 57 |
| Gehäuse                        | 60 |

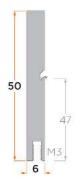


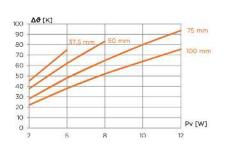
Aus ca. 200 verschiedenen Kühlkörperprofilen finden Sie schnell und zuverlässig Ihre passende Entwärmungslösung.

Auf den folgenden Seiten finden Sie Ihre Auswahl an Standardprofilen, sortiert nach Profilbreite.

Die Darstellung der Geometrie und ein detailliertes thermisches Diagramm bieten Ihnen eine erste Orientierung.

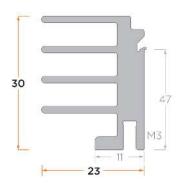
Auf unserer Website finden Sie zu jedem Profil weitere Informationen sowie 2D und 3D Zeichnungen als Download.

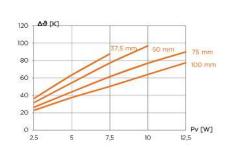

Sollten Sie auf der Suche nach Lösungen in diesem Katalog nichts passendes finden, dann rufen Sie uns an.


Wir erweitern ständig unser Angebot; aktuelle Daten finden Sie ebenfalls unter www.alutronic.de



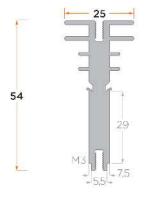
Passende Clips zu unsere Profilen mit Clipnut finden Sie im Kapitel Befestigung / Montage Clipse

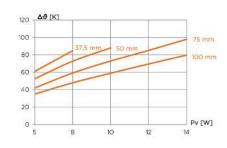

#### PR 101






| Pv [W] |      | RthK | [K/W] |      |
|--------|------|------|-------|------|
| 2      | 22,5 | 18,8 | 14,0  | 11,0 |
| 5      | 15,0 | 12,4 | 9,6   | 7,6  |
| 8      |      | 10,4 | 8,1   | 6,5  |
| 10     |      |      | 8,0   | 6,4  |
| 12     |      |      | 7,8   | 6,3  |
| mm     | 37,5 | 50   | 75    | 100  |
| kg/m   |      | 0,   | 77    |      |


#### PR 290

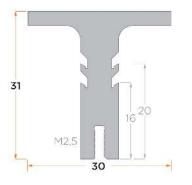


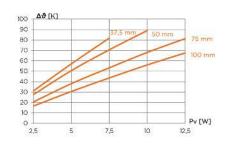



| Pv [W]<br>2,5 |      | RthK | [K/W] |     |
|---------------|------|------|-------|-----|
|               | 14,5 | 12,6 | 10,5  | 9,1 |
| 5             | 12,7 | 10,9 | 8,8   | 7,5 |
| 7,5           | 11,7 | 10,3 | 8,2   | 6,7 |
| 10            |      | 9,7  | 7,7   | 6,4 |
| 12,5          |      |      | 7,2   | 6,2 |
| mm            | 37,5 | 50   | 75    | 100 |
| kg/m          |      | 0,   | 70    |     |

#### **PR 118**

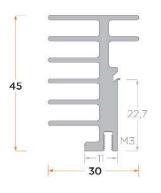


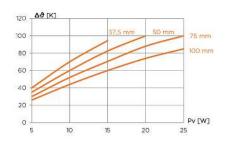




| Pv [W] |      | RthK [ | K/W] |     |
|--------|------|--------|------|-----|
|        | 12,2 | 10,5   | 8,4  | 7,0 |
| 8      | 10,6 | 9,1    | 7,4  | 6,0 |
| 10     |      | 8,8    | 7,3  | 5,9 |
| 12     |      |        | 7,1  | 5,8 |
| 14     |      |        | 7,0  | 5,7 |
| mm     | 37,5 | 50     | 75   | 100 |
| kg/m   | 1,16 |        |      |     |



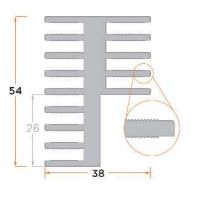
Alutronic montiert Silikonfolien auf Ihre Kühlkörper!

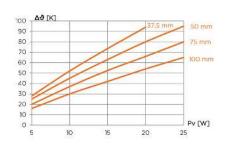


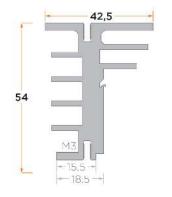


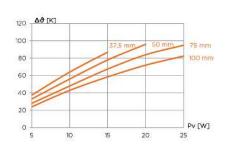

| Pv [W] | RthK [K/W] |      |     |     |  |
|--------|------------|------|-----|-----|--|
| 2,5    | 12,4       | 11,0 | 8,2 | 6,6 |  |
| 5      | 11,4       | 10,1 | 7,6 | 6,1 |  |
| 7,5    | 10,9       | 9,4  | 7,1 | 5,8 |  |
| 10     |            | 8,9  | 6,8 | 5,6 |  |
| 12,5   |            |      | 6,5 | 5,4 |  |
| mm     | 37,5       | 50   | 75  | 100 |  |
| kg/m   |            | 0,   | 79  |     |  |


#### PR 127





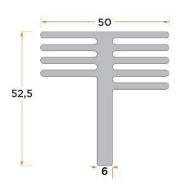


| Pv [W] |      | RthK | [K/W] |     |
|--------|------|------|-------|-----|
| 5      | 8,0  | 7,0  | 6,0   | 5,2 |
| 10     | 7,0  | 6,0  | 5,2   | 4,4 |
| 15     | 6,3  | 5,5  | 4,7   | 4,0 |
| 20     |      | 5,0  | 4,4   | 3,7 |
| 25     |      |      | 4,0   | 3,4 |
| mm     | 37,5 | 50   | 75    | 100 |
| kg/m   |      | 1,0  | 07    |     |

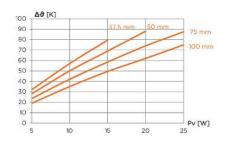

#### **PR 136**





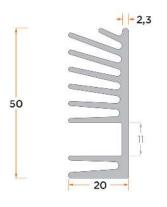
| Pv [W] | RthK [K/W] |     |     |     |
|--------|------------|-----|-----|-----|
|        | 5,6        | 5,0 | 4,0 | 3,2 |
| 10     | 5,2        | 4,5 | 3,7 | 3,0 |
| 15     | 4,9        | 4,2 | 3,5 | 2,8 |
| 20     | 4,7        | 4,0 | 3,3 | 2,7 |
| 25     | 100        | 3,8 | 3,2 | 2,6 |
| mm     | 37,5       | 50  | 75  | 100 |
| kg/m   |            | 2.0 | 07  |     |

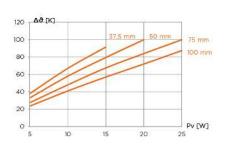



| Pv [W] | RthK [K/W] |     |     |     |
|--------|------------|-----|-----|-----|
| 5      | 7,5        | 6,6 | 5,6 | 4,8 |
| 10     | 6,4        | 5,6 | 4,8 | 4,3 |
| 15     | 5,8        | 5,2 | 4,5 | 3,9 |
| 20     |            | 4,8 | 4,2 | 3,6 |
| 25     |            | 300 | 3,8 | 3,3 |
| mm     | 37,5       | 50  | 75  | 100 |
| kg/m   | 1,95       |     |     |     |

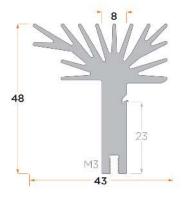
# **ALUTRONIC**

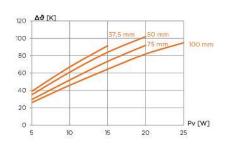

#### **PR 268**



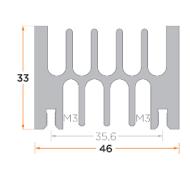


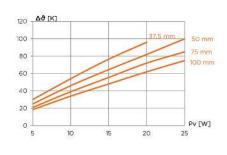

| Pv [W] |      | RthK | [K/W] |     |
|--------|------|------|-------|-----|
| 5      | 6,4  | 5,6  | 4,7   | 3,8 |
| 10     | 5,7  | 5,0  | 4,2   | 3,5 |
| 15     | 5,3  | 4,6  | 3,9   | 3,3 |
| 20     |      | 4,4  | 3,7   | 3,1 |
| 25     |      |      | 3,5   | 3,0 |
| mm     | 37,5 | 50   | 75    | 100 |
| kg/m   | 2,14 |      |       |     |


#### **PR 139**





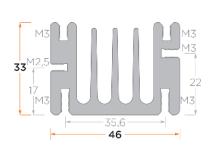


| Pv [W] |      | RthK | [K/W] |     |
|--------|------|------|-------|-----|
| 5      | 7,6  | 6,6  | 5,5   | 4,7 |
| 10     | 6,7  | 5,8  | 4,8   | 4,1 |
| 15     | 6,1  | 5,3  | 4,5   | 3,8 |
| 20     |      | 5    | 4,2   | 3,6 |
| 25     |      |      | 4     | 3,5 |
| mm     | 37,5 | 50   | 75    | 100 |
| kg/m   | 1,08 |      |       |     |

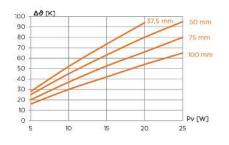

#### PR 292





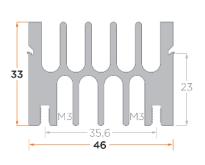
| Pv [W] |      | RthK | [K/W] |     |
|--------|------|------|-------|-----|
| 5      | 7,8  | 7,0  | 5,9   | 5,2 |
| 10     | 6,7  | 6,1  | 5,2   | 4,6 |
| 15     | 6,1  | 5,6  | 4,9   | 4,3 |
| 20     |      | 5,1  | 4,6   | 4,1 |
| 25     |      |      |       | 3,8 |
| mm     | 37,5 | 50   | 75    | 100 |
| kg/m   | 1,57 |      |       |     |

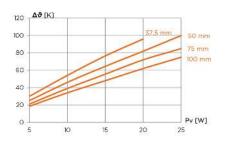


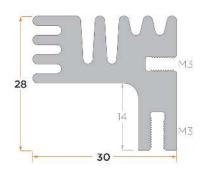

| Pv [W] |      | RthK | [K/W] |     |
|--------|------|------|-------|-----|
| 5      | 6,0  | 5,0  | 4,2   | 3,7 |
| 10     | 5,4  | 4,6  | 3,9   | 3,4 |
| 15     | 5,1  | 4,3  | 3,7   | 3,2 |
| 20     | 4,8  | 4,1  | 3,6   | 3,1 |
| 25     | 7/0  | 4,0  | 3,4   | 3,0 |
| mm     | 37,5 | 50   | 75    | 100 |
| kg/m   | 1,89 |      |       |     |

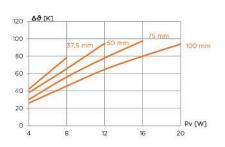



mit integriertem Schraubkanal zur Halbleiterbefestigung







| Pv [W] |      | RthK [K/W] |     |     |
|--------|------|------------|-----|-----|
| 5      | 5,6  | 5,0        | 4,0 | 3,2 |
| 10     | 5,2  | 4,5        | 3,7 | 3,0 |
| 15     | 4,9  | 4,2        | 3,5 | 2,8 |
| 20     | 4,7  | 4,0        | 3,3 | 2,7 |
| 25     | 77.5 | 3,8        | 3,2 | 2,6 |
| mm     | 37,5 | 50         | 75  | 100 |
| kg/m   | 2,17 |            |     |     |

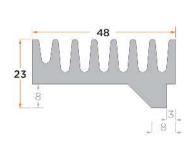

#### PR 293

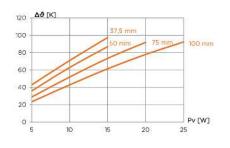




| Pv [W] |      | RthK [ | [K/W] |     |
|--------|------|--------|-------|-----|
| 5      | 6,0  | 5,0    | 4,2   | 3,7 |
| 10     | 5,4  | 4,6    | 3,9   | 3,4 |
| 15     | 5,1  | 4,3    | 3,7   | 3,2 |
| 20     | 4,8  | 4,1    | 3,6   | 3,1 |
| 25     |      | 4,0    | 3,4   | 3,0 |
| mm     | 37,5 | 50     | 75    | 100 |
| kg/m   | 1,76 |        |       |     |

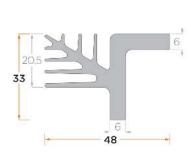


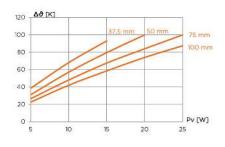




| Pv [W] |      | RthK | [K/W] |     |
|--------|------|------|-------|-----|
| 4      | 10,5 | 9,5  | 7,5   | 6,5 |
| 8      | 9,8  | 8,2  | 7,0   | 5,7 |
| 12     |      | 7,9  | 6,5   | 5,4 |
| 16     |      |      | 6,1   | 5,0 |
| 20     |      |      |       | 4,7 |
| mm     | 37,5 | 50   | 75    | 100 |
| ka/m   |      | 1.0  | )9    |     |



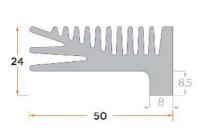
# **ALUTRONIC**

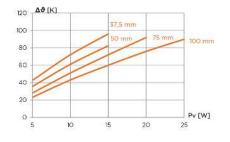

#### PR 132



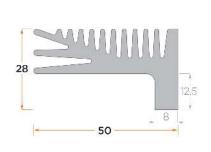


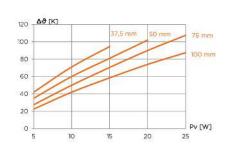

| Pv [W] |      | RthK | [K/W] |     |
|--------|------|------|-------|-----|
| 5      | 8,6  | 7,2  | 5,8   | 4,7 |
| 10     | 7,1  | 6,3  | 5,2   | 4,3 |
| 15     | 6,5  | 5,8  | 4,9   | 4,1 |
| 20     |      |      | 4,6   | 3,9 |
| 25     |      |      |       | 3,7 |
| mm     | 37,5 | 50   | 75    | 100 |
| kg/m   | 1,37 |      |       |     |


#### **PR 143**





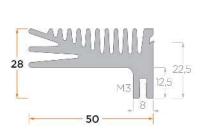


| Pv [W] |      | RthK | [K/W] |     |
|--------|------|------|-------|-----|
| 5      | 7,7  | 6,2  | 5,3   | 4,5 |
| 10     | 6,8  | 5,7  | 4,8   | 4,2 |
| 15     | 6,2  | 5,3  | 4,5   | 3,9 |
| 20     |      | 5,0  | 4,2   | 3,7 |
| 25     |      |      | 4,0   | 3,5 |
| mm     | 37,5 | 50   | 75    | 100 |
| kg/m   | 1,35 |      |       |     |

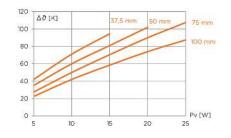

#### PR 144





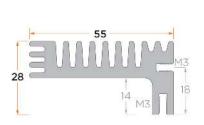
| Pv [W] |      | RthK | [K/W] |     |
|--------|------|------|-------|-----|
| 5      | 8,5  | 7,1  | 5,6   | 4,6 |
| 10     | 7,2  | 6,1  | 5,1   | 4,3 |
| 15     | 6,4  | 5,5  | 4,8   | 4,0 |
| 20     |      |      | 4,6   | 3,8 |
| 25     |      |      |       | 3,6 |
| mm     | 37,5 | 50   | 75    | 100 |
| kg/m   | 1,61 |      |       |     |

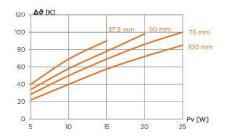



| Pv [W] |      | RthK | [K/W] |     |
|--------|------|------|-------|-----|
| 5      | 8,4  | 7,0  | 5,5   | 4,5 |
| 10     | 7,1  | 6,0  | 5,0   | 4,2 |
| 15     | 6,3  | 5,4  | 4,7   | 3,9 |
| 20     |      | 5,1  | 4,5   | 3,7 |
| 25     |      |      | 4,3   | 3,5 |
| mm     | 37,5 | 50   | 75    | 100 |
| kg/m   | 1,75 |      |       |     |

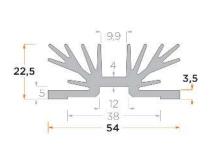
#### ALUTRONIC SOLUTIONS FOR COOL RESULTS

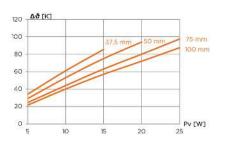

#### PR 233



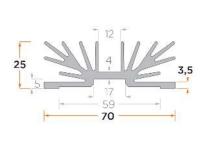


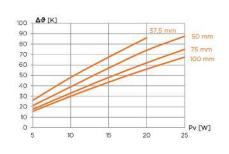

| Pv [W] | RthK [K/W] |     |     |     |
|--------|------------|-----|-----|-----|
| 5      | 8,4        | 7,0 | 5,5 | 4,5 |
| 10     | 7,1        | 6,0 | 5,0 | 4,2 |
| 15     | 6,3        | 5,4 | 4,7 | 3,9 |
| 20     |            | 5,1 | 4,5 | 3,7 |
| 25     |            |     | 4,3 | 3,5 |
| mm     | 37,5       | 50  | 75  | 100 |
| kg/m   | 1,64       |     |     |     |


#### **PR 126**







| Pv [W] |      | RthK | [K/W] |     |
|--------|------|------|-------|-----|
| 5      | 8,0  | 6,8  | 5,7   | 4,4 |
| 10     | 6,9  | 5,8  | 5,0   | 4,0 |
| 15     | 6,0  | 5,2  | 4,6   | 3,9 |
| 20     |      | 4,9  | 4,3   | 3,6 |
| 25     |      |      | 4,0   | 3,4 |
| mm     | 37,5 | 50   | 75    | 100 |
| kg/m   |      | 1,6  | 55    |     |

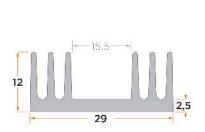

#### PR 134

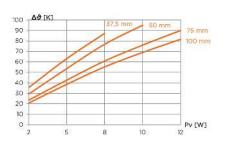




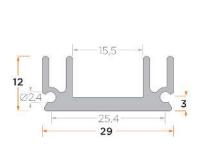
| Pv [W] | RthK [K/W] |     |     |     |
|--------|------------|-----|-----|-----|
| 5      | 6,8        | 5,8 | 4,9 | 4,3 |
| 10     | 6,1        | 5,3 | 4,4 | 4,0 |
| 15     | 5,7        | 5,0 | 4,2 | 3,8 |
| 20     |            | 4,7 | 4,0 | 3,6 |
| 25     |            | 223 | 3,9 | 3,5 |
| mm     | 37,5       | 50  | 75  | 100 |
| kg/m   | 1,33       |     |     |     |

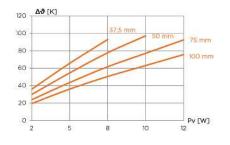






| Pv [W] |      | RthK [K/W] |     |     |
|--------|------|------------|-----|-----|
| 5      | 5,2  | 4,2        | 3,5 | 3,1 |
| 10     | 4,8  | 3,9        | 3,3 | 3,0 |
| 15     | 4,5  | 3,8        | 3,2 | 2,9 |
| 20     | 4,3  | 3,7        | 3,1 | 2,8 |
| 25     | 177  | 3,5        | 3,0 | 2,7 |
| mm     | 37,5 | 50         | 75  | 100 |
| kg/m   | 1,80 |            |     |     |

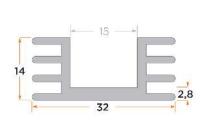


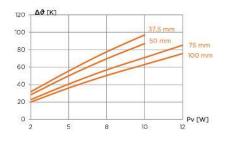

Auf den folgenden Seiten finden Sie unsere Standardprofile mit versenkter Montagefläche


#### **PR 20**



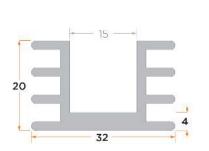



| Pv [W] |      |      |      |      |
|--------|------|------|------|------|
| 2      | 17,7 | 14,6 | 11,7 | 10,3 |
| 5      | 12,6 | 10,7 | 8,5  | 7,7  |
| 8      | 10,9 | 9,6  | 7,6  | 6,9  |
| 10     |      | 9,5  | 7,6  | 6,9  |
| 12     |      | - 38 | 7,5  | 6,8  |
| mm     | 37,5 | 50   | 75   | 100  |
| kg/m   | 0,39 |      |      |      |






| Pv [W] |      | RthK | [K/W] |     |
|--------|------|------|-------|-----|
| 2      | 17,9 | 14,9 | 11,9  | 9,7 |
| 5      | 13,1 | 10,9 | 8,7   | 7,2 |
| 8      | 11,6 | 9,7  | 7,7   | 6,3 |
| 10     |      | 9,7  | 7,7   | 6,3 |
| 12     |      |      | 7,7   | 6,3 |
| mm     | 37,5 | 50   | 75    | 100 |
| kg/m   | 0,40 |      |       |     |

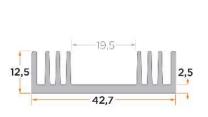

**PR 27** 

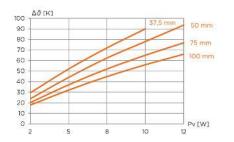




| Pv [W] |      | RthK [K/W] |      |     |  |
|--------|------|------------|------|-----|--|
| 2      | 15,8 | 14,1       | 11,3 | 9,9 |  |
| 5      | 11,1 | 10,0       | 8,1  | 7,2 |  |
| 8      | 9,7  | 8,7        | 7,1  | 6,3 |  |
| 10     | 9,7  | 8,7        | 7,1  | 6,3 |  |
| 12     | 20   | 38         | 7,1  | 6,3 |  |
| mm     | 37,5 | 50         | 75   | 100 |  |
| kg/m   |      | 0.46       |      |     |  |

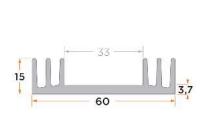
**PR 25** 

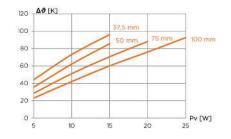


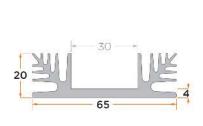

| Pv [W] | RthK [K/W] |      |     |     |
|--------|------------|------|-----|-----|
| 2      | 13,1       | 10,9 | 9,3 | 8,1 |
| 5      | 9,6        | 8,1  | 6,9 | 5,9 |
| 8      | 8,5        | 7,2  | 6,1 | 5,2 |
| 10     | 8,6        | 7,2  | 6,1 | 5,2 |
| 12     | 100        | 7,2  | 6,1 | 5,2 |
| mm     | 37,5       | 50   | 75  | 100 |
| kg/m   | 0,65       |      |     |     |

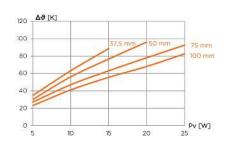
**ALUTRONIC** 


**PR 22** 



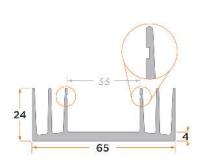


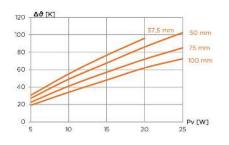


| Pv [W] | RthK [K/W] |      |      |     |
|--------|------------|------|------|-----|
| 2      | 14,7       | 11,9 | 10,1 | 8,9 |
| 5      | 10,4       | 8,8  | 7,4  | 6,4 |
| 8      | 9,0        | 7,8  | 6,5  | 5,6 |
| 10     | 9,0        | 7,8  | 6,5  | 5,6 |
| 12     |            | 7,8  | 6,4  | 5,5 |
| mm     | 37,5       | 50   | 75   | 100 |
| kg/m   | 0,57       |      |      |     |


PR 35



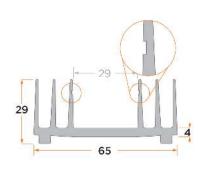


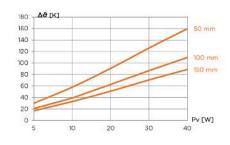

| Pv [W] | RthK [K/W] |     |     |     |
|--------|------------|-----|-----|-----|
| 5      | 8,8        | 7,1 | 5,7 | 4,6 |
| 10     | 7,3        | 6,2 | 5,1 | 4,2 |
| 15     | 6,4        | 5,7 | 4,7 | 4,0 |
| 20     |            |     | 4,4 | 3,8 |
| 25     |            |     |     | 3,7 |
| mm     | 37,5       | 50  | 75  | 100 |
| kg/m   | 0,96       |     |     |     |





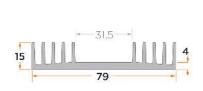

| Pv [W] | RthK [K/W] |     |     |     |
|--------|------------|-----|-----|-----|
| 5      | 6,9        | 6,0 | 5,4 | 4,6 |
| 10     | 6,3        | 5,6 | 4,7 | 4,1 |
| 15     | 5,9        | 5,1 | 4,2 | 3,7 |
| 20     |            | 4,8 | 3,9 | 3,4 |
| 25     |            |     | 3,7 | 3,3 |
| mm     | 37,5       | 50  | 75  | 100 |
| kg/m   | 1,36       |     |     |     |

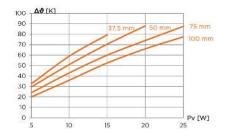


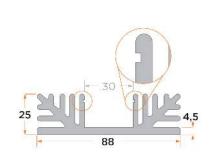


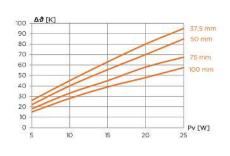

| Pv [W] |      | RthK [K/W] |     |     |  |
|--------|------|------------|-----|-----|--|
| 5      | 6,1  | 5,4        | 4,5 | 3,8 |  |
| 10     | 5,5  | 4,9        | 4,1 | 3,4 |  |
| 15     | 5,1  | 4,5        | 3,8 | 3,2 |  |
| 20     | 4,8  | 4,3        | 3,6 | 3,1 |  |
| 25     |      | 4,1        | 3,4 | 2,9 |  |
| mm     | 37,5 | 50         | 75  | 100 |  |
| kg/m   | 1,22 |            |     |     |  |


#### **PR 50**





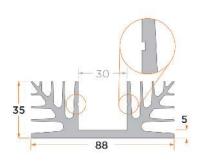


| Pv [W] | RthK [K/W] |     |     |
|--------|------------|-----|-----|
| 5      | 6,0        | 4,2 | 3,4 |
| 10     | 5,8        | 3,9 | 3,3 |
| 20     | 4,5        | 3,1 | 2,6 |
| 30     | 4,2        | 2,9 | 2,4 |
| 40     | 4,0        | 2,7 | 2,2 |
| mm     | 50         | 100 | 150 |
| kg/m   | 1,28       |     |     |

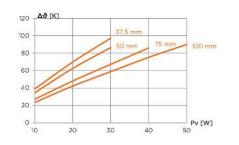

#### **PR 65**





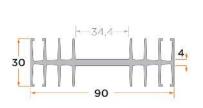
| Pv [W] |      |     |     |     |
|--------|------|-----|-----|-----|
| 5      | 6,5  | 5,9 | 4,8 | 4,0 |
| 10     | 5,9  | 5,1 | 4,3 | 3,6 |
| 15     | 5,3  | 4,7 | 4,0 | 3,5 |
| 20     |      | 4,4 | 3,7 | 3,3 |
| 25     |      | - W | 3,5 | 3,1 |
| mm     | 37,5 | 50  | 75  | 100 |
| kg/m   |      | 1,2 | 22  |     |

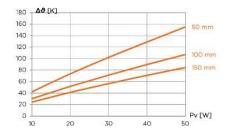



| Pv [W] | RthK [K/W] |     |     |     |
|--------|------------|-----|-----|-----|
| 5      | 5,2        | 4,4 | 3,6 | 3,0 |
| 10     | 4,5        | 4,0 | 3,3 | 2,8 |
| 15     | 4,2        | 3,7 | 3,0 | 2,6 |
| 20     | 4,0        | 3,5 | 2,9 | 2,4 |
| 25     | 3,8        | 3,4 | 2,7 | 2,3 |
| mm     | 37,5       | 50  | 75  | 100 |
| kg/m   | 2,97       |     |     |     |

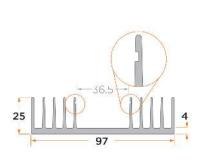
## ALUTRONIC SOLUTIONS FOR COOL RESULTS

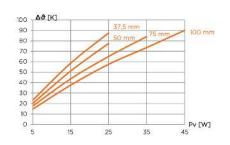

#### **PR 130**



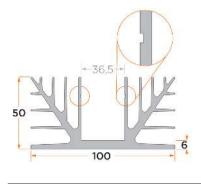


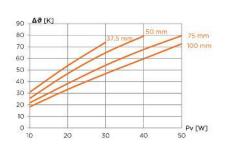

| Pv [W] | RthK [K/W] |      |      |      |
|--------|------------|------|------|------|
| 10     | 3,89       | 3,44 | 2,71 | 2,34 |
| 20     | 3,49       | 3,12 | 2,40 | 2,11 |
| 30     | 3,24       | 2,88 | 2,24 | 1,96 |
| 40     |            |      | 2,15 | 1,88 |
| 50     |            |      |      | 1,80 |
| mm     | 37,5       | 50   | 75   | 100  |
| kg/m   | 2,94       |      |      |      |


#### **PR 198**



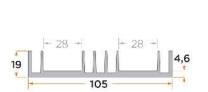


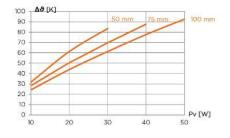


| Pv [W] | RthK [K/W] |      |     |  |
|--------|------------|------|-----|--|
| 10     | 4,2        | 3,0  | 2,4 |  |
| 20     | 3,7        | 2,6  | 2,1 |  |
| 30     | 3,4        | 2,4  | 1,9 |  |
| 40     | 3,2        | 2,2  | 1,8 |  |
| 50     | 3,1        | 2,1  | 1,7 |  |
| mm     | 50         | 100  | 150 |  |
| kg/m   |            | 1,54 |     |  |


#### **PR 90**



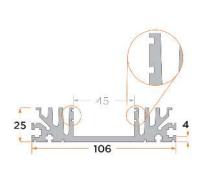


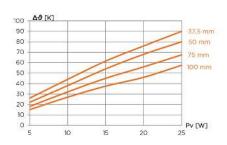

| Pv [W] | RthK [K/W] |      |     |     |
|--------|------------|------|-----|-----|
| 5      | 4,6        | 4,0  | 3,5 | 2,9 |
| 15     | 3,9        | 3,4  | 2,9 | 2,5 |
| 25     | 3,5        | 3,1  | 2,6 | 2,3 |
| 35     |            |      | 2,4 | 2,1 |
| 45     |            |      |     | 2,0 |
| mm     | 37,5       | 50   | 75  | 100 |
| kg/m   |            | 1,92 |     |     |





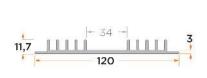

| Pv [W] |      | RthK | [K/W] |      |
|--------|------|------|-------|------|
| 10     | 3,08 | 2,54 | 2,16  | 1,82 |
| 20     | 2,68 | 2,34 | 1,91  | 1,66 |
| 30     | 2,46 | 2,16 | 1,80  | 1,56 |
| 40     |      | 1,98 | 1,69  | 1,49 |
| 50     |      |      | 1,59  | 1,45 |
| mm     | 37,5 | 50   | 75    | 100  |
| kg/m   | 4,32 |      |       |      |

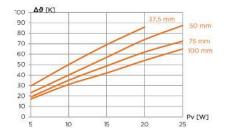


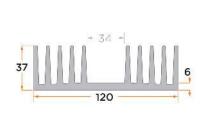


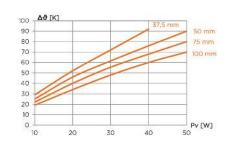

| Pv [W] | Rt   | thK [K/V | V]   |
|--------|------|----------|------|
| 10     | 3,16 | 2,83     | 2,42 |
| 20     | 3,06 | 2,52     | 2,19 |
| 30     | 2,78 | 2,32     | 2,04 |
| 40     |      | 2,19     | 1,94 |
| 50     |      |          | 1,85 |
| mm     | 50   | 75       | 100  |
| kg/m   |      | 1,93     |      |


#### PR 129

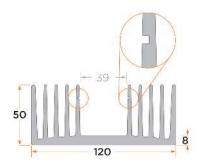


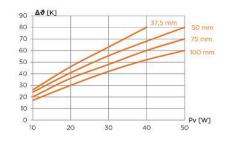




| Pv [W] |      | RthK [K/W] |     |     |  |  |
|--------|------|------------|-----|-----|--|--|
| 5      | 5,2  | 4,4        | 3,6 | 3,0 |  |  |
| 10     | 4,4  | 3,8        | 3,2 | 2,7 |  |  |
| 15     | 4,1  | 3,6        | 3,0 | 2,5 |  |  |
| 20     | 3,8  | 3,4        | 2,8 | 2,3 |  |  |
| 25     | 3,6  | 3,2        | 2,7 | 2,3 |  |  |
| mm     | 37,5 | 50         | 75  | 100 |  |  |
| kg/m   | 2,70 |            |     |     |  |  |


#### **PR 100**

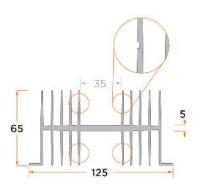


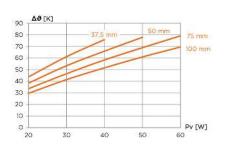




| Pv [W] |      | RthK | [K/W] |     |
|--------|------|------|-------|-----|
| 5      | 5,9  | 4,6  | 3,8   | 3,4 |
| 10     | 5,0  | 4,0  | 3,5   | 3,1 |
| 15     | 4,6  | 3,8  | 3,3   | 2,8 |
| 20     | 4,3  | 3,7  | 3,1   | 2,7 |
| 25     | 80   | 3,5  | 2,9   | 2,6 |
| mm     | 37,5 | 50   | 75    | 100 |
| kg/m   |      | 1,3  | 35    |     |

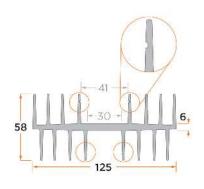


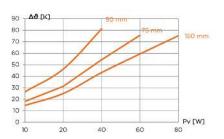



| Pv [W] |      | RthK | [K/W] |     |
|--------|------|------|-------|-----|
| 10     | 2,9  | 2,5  | 2,2   | 1,9 |
| 20     | 2,6  | 2,3  | 2,0   | 1,7 |
| 30     | 2,4  | 2,1  | 1,9   | 1,6 |
| 40     | 2,3  | 1,9  | 1,7   | 1,5 |
| 50     |      | 1,8  | 1,6   | 1,4 |
| mm     | 37,5 | 50   | 75    | 100 |
| kg/m   |      | 4,   | 93    |     |



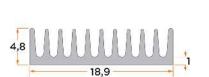


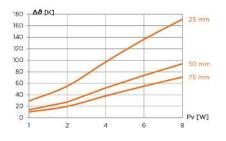


| Pv [W] |      | RthK | [K/W] |     |
|--------|------|------|-------|-----|
| 10     | 2,6  | 2,4  | 2,0   | 1,7 |
| 20     | 2,3  | 2,0  | 1,8   | 1,5 |
| 30     | 2,1  | 1,9  | 1,6   | 1,4 |
| 40     | 2,0  | 1,7  | 1,5   | 1,3 |
| 50     |      | 1,6  | 1,4   | 1,2 |
| mm     | 37,5 | 50   | 75    | 100 |
| kg/m   | 5,92 |      |       |     |


#### PR 192



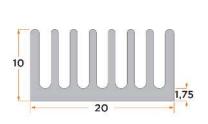


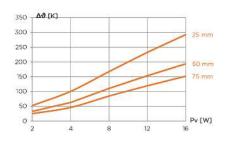

| Pv [W] |      | RthK | [K/W] |      |
|--------|------|------|-------|------|
| 20     | 2,19 | 1,92 | 1,68  | 1,48 |
| 30     | 2,04 | 1,78 | 1,55  | 1,38 |
| 40     | 1,90 | 1,65 | 1,46  | 1,29 |
| 50     |      | 1,56 | 1,38  | 1,22 |
| 60     |      |      | 1,32  | 1,16 |
| mm     | 37,5 | 50   | 75    | 100  |
| kg/m   |      | 4,   | 33    |      |





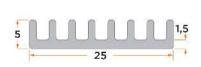

| Pv [W] | RthK [K/W] |     |     |
|--------|------------|-----|-----|
| 10     | 2,6        | 1,8 | 1,5 |
| 20     | 2,3        | 1,6 | 1,3 |
| 40     | 2,0        | 1,4 | 1,1 |
| 60     | 1,9        | 1,3 | 1,0 |
| 80     | 1,8        | 1,2 | 0,9 |
| mm     | 50         | 100 | 150 |
| kg/m   | 4,29       |     |     |

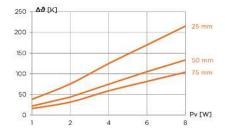

Auf den folgenden Seiten finden Sie unsere einseitig verrippten Standardprofile





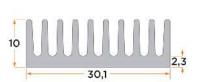

| Pv [W] | RthK [K/W] |      |      |  |
|--------|------------|------|------|--|
| 1      | 29,0       | 13,9 | 10,1 |  |
| 2      | 27,5       | 13,6 | 9,9  |  |
| 4      | 24,2       | 12,9 | 9,5  |  |
| 6      | 22,7       | 12,3 | 9,1  |  |
| 8      | 21,4       | 11,7 | 8,9  |  |
| mm     | 25         | 50   | 75   |  |
| kg/m   | 0,13       |      |      |  |

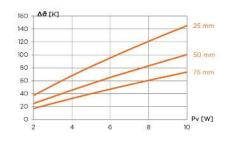

**PR 45** 






| Pv [W] | Rt   | hK [K/V | ٧]   |
|--------|------|---------|------|
| 2      | 26,3 | 16,6    | 12,7 |
| 4      | 25,2 | 15,8    | 11,6 |
| 8      | 20,9 | 13,8    | 10,6 |
| 12     | 19,4 | 12,8    | 10,0 |
| 16     | 18,3 | 12,1    | 9,5  |
| mm     | 25   | 50      | 75   |
| kg/m   | 0,28 |         |      |

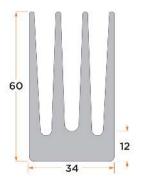

**PR 46** 

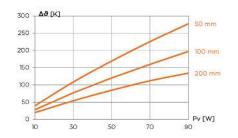





| Pv [W] | RthK [K/W] |      |      |  |
|--------|------------|------|------|--|
| 1      | 38,0       | 21,9 | 16,0 |  |
| 2      | 37,8       | 21,8 | 15,8 |  |
| 4      | 31,2       | 18,7 | 14,7 |  |
| 6      | 28,3       | 17,5 | 13,6 |  |
| 8      | 26,9       | 16,7 | 13,0 |  |
| mm     | 25         | 50   | 75   |  |
| ka/m   | 0.20       |      |      |  |

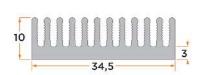
**PR 47** 

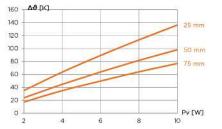



| Pv [W] | RthK [K/W] |      |     |
|--------|------------|------|-----|
| 2      | 18,7       | 8,6  |     |
| 4      | 17,0       | 11,4 | 8,2 |
| 6      | 15,9       | 10,9 | 7,8 |
| 8      | 15,1       | 10,4 | 7,6 |
| 10     | 14,5       | 10,0 | 7,3 |
| mm     | 25         | 50   | 75  |
| kg/m   | 0,48       |      |     |

**ALUTRONIC** 

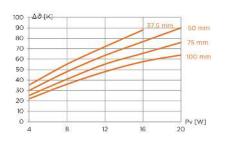

#### PR 389





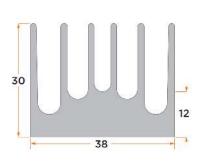


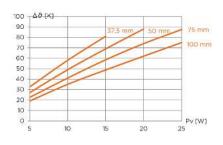
| Pv [W] | RthK [K/W] |     |     |
|--------|------------|-----|-----|
| 10     | 3,9        | 2,8 | 2,0 |
| 30     | 3,6        | 2,6 | 1,8 |
| 50     | 3,4        | 2,4 | 1,7 |
| 70     | 3,2        | 2,3 | 1,6 |
| 90     | 3,1        | 2,2 | 1,5 |
| mm     | 50         | 100 | 200 |
| kg/m   | 2,84       |     |     |


#### **PR 48**



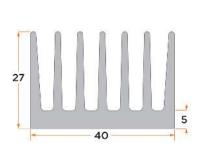


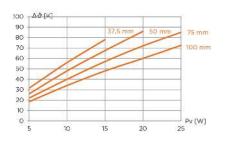

| Pv [W] | RthK [K/W] |       |      |  |
|--------|------------|-------|------|--|
| 2      | 17,54      | 11,95 | 8,65 |  |
| 4      | 15,89      | 11,17 | 8,73 |  |
| 6      | 14,89      | 10,64 | 8,29 |  |
| 8      | 14,18      | 10,21 | 8,00 |  |
| 10     | 13,63      | 9,81  | 7,69 |  |
| mm     | 25         | 50    | 75   |  |
| kg/m   | 0,56       |       |      |  |





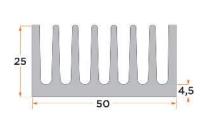

| Pv [W] | RthK [K/W]  |     |     |     |  |  |
|--------|-------------|-----|-----|-----|--|--|
| 4      | 8,8 7,5 6,3 |     |     |     |  |  |
| 8      | 6,9         | 6,0 | 5,1 | 4,5 |  |  |
| 12     | 6,0         | 5,3 | 4,6 | 4,0 |  |  |
| 16     | 5,5         | 4,8 | 4,1 | 3,6 |  |  |
| 20     |             | 4,5 | 3,8 | 3,2 |  |  |
| mm     | 37,5        | 50  | 75  | 100 |  |  |
| kg/m   | 0,83        |     |     |     |  |  |

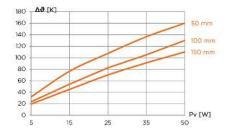


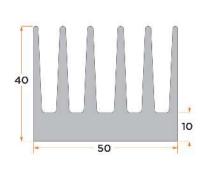


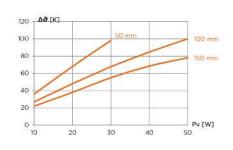

| Pv [W] |      | RthK | [K/W] |     |
|--------|------|------|-------|-----|
| 5      | 6,5  | 5,4  | 4,5   | 3,8 |
| 10     | 5,8  | 4,9  | 4,1   | 3,5 |
| 15     | 5,4  | 4,6  | 3,9   | 3,3 |
| 20     |      | 4,4  | 3,7   | 3,1 |
| 25     |      | 100  | 3,5   | 3,0 |
| mm     | 37,5 | 50   | 75    | 100 |
| kg/m   | 1,54 |      |       |     |


#### PR 313



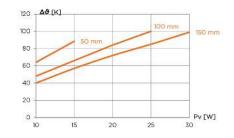




| Pv [W] |      | RthK | [K/W] |     |
|--------|------|------|-------|-----|
| 5      | 6,3  | 5,2  | 4,4   | 3,7 |
| 10     | 5,6  | 4,8  | 4,0   | 3,4 |
| 15     | 5,2  | 4,5  | 3,8   | 3,2 |
| 20     |      | 4,3  | 3,6   | 3,0 |
| 25     |      |      | 3,4   | 2,9 |
| mm     | 37,5 | 50   | 75    | 100 |
| kg/m   | 1,40 |      |       |     |

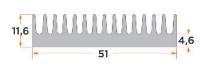

#### PR 312



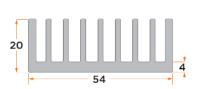


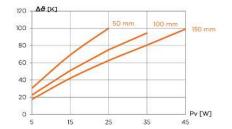

| Pv [W] | RthK [K/W] |     |     |  |
|--------|------------|-----|-----|--|
| 5      | 6,4        | 4,7 | 3,9 |  |
| 15     | 5,1        | 3,6 | 3,0 |  |
| 25     | 4,3        | 3,3 | 2,8 |  |
| 35     | 3,9        | 3,0 | 2,6 |  |
| 50     | 3,2        | 2,6 | 2,2 |  |
| mm     | 50         | 100 | 150 |  |
| kg/m   | 1,79       |     |     |  |





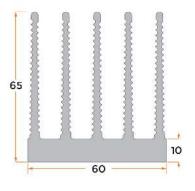

| Pv [W] | RthK [K/W] |     |     |
|--------|------------|-----|-----|
| 10     | 3,6        | 2,7 | 2,2 |
| 20     | 3,4        | 2,4 | 1,9 |
| 30     | 3,3        | 2,3 | 1,8 |
| 40     |            | 2,1 | 1,7 |
| 50     |            | 2,0 | 1,6 |
| mm     | 50         | 100 | 150 |
| kg/m   | 2,68       |     |     |

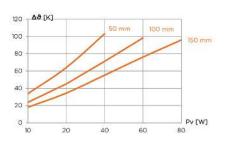


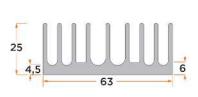

| Pv [W] | RthK [K/W] |     |     |
|--------|------------|-----|-----|
| 10     | 6,4        | 4,8 | 4,0 |
| 15     | 5,9        | 4,4 | 3,8 |
| 20     |            | 4,2 | 3,6 |
| 25     |            | 4,0 | 3,4 |
| 30     |            |     | 3,3 |
| mm     | 50         | 100 | 150 |
| kg/m   | 1,05       |     |     |

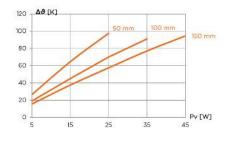



#### PR 159



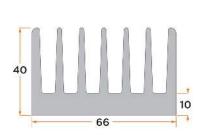


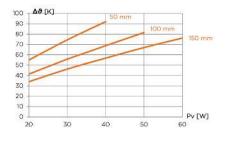


| Pv [W] | R    | V]  |     |
|--------|------|-----|-----|
| 5      | 6,1  | 4,5 | 3,5 |
| 15     | 4,6  | 3,4 | 2,8 |
| 25     | 4,0  | 3,0 | 2,5 |
| 35     |      | 2,7 | 2,3 |
| 45     |      |     | 2,2 |
| mm     | 50   | 100 | 150 |
| kg/m   | 1,49 |     |     |


#### PR 398



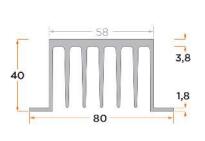


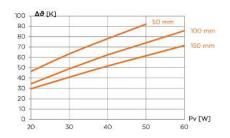

| Pv [W] | Rt   | thK [K/V | V]   |
|--------|------|----------|------|
| 10     | 3,37 | 2,37     | 1,80 |
| 20     | 3,20 | 2,25     | 1,72 |
| 40     | 2,58 | 1,78     | 1,38 |
| 60     | 2,40 | 1,64     | 1,27 |
| 80     | 2,28 | 1,56     | 1,20 |
| mm     | 50   | 100      | 150  |
| kg/m   | 3,65 |          |      |





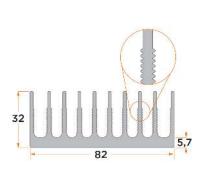

| Pv [W] | W] RthK [K/W] |     | V]  |
|--------|---------------|-----|-----|
| 5      | 5,3           | 3,8 | 3,1 |
| 15     | 4,3           | 3,0 | 2,5 |
| 25     | 3,9           | 2,8 | 2,3 |
| 35     |               | 2,6 | 2,2 |
| 45     |               |     | 2,1 |
| mm     | 50            | 100 | 150 |
| ka/m   | 1.86          |     |     |


# **ALUTRONIC**



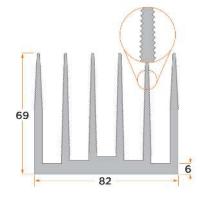


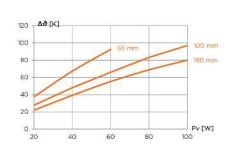

| Pv [W] | v [W] RthK [K |      | /W]  |
|--------|---------------|------|------|
| 20     | 2,75          | 2,07 | 1,70 |
| 30     | 2,48          | 1,86 | 1,54 |
| 40     | 2,30          | 1,72 | 1,42 |
| 50     |               | 1,63 | 1,34 |
| 60     |               | 1,54 | 1,27 |
| mm     | 50            | 100  | 150  |
| kg/m   | 3,72          |      |      |


**PR 181** 





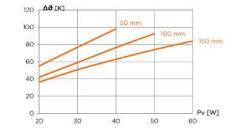

| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 20     | 2,32       | 1,72 | 1,48 |
| 30     | 2,11       | 1,63 | 1,36 |
| 40     | 1,95       | 1,56 | 1,29 |
| 50     | 1,84       | 1,48 | 1,23 |
| 60     |            | 1,43 | 1,19 |
| mm     | 50         | 100  | 150  |
| kg/m   | 1,99       |      |      |


**PR 367** 



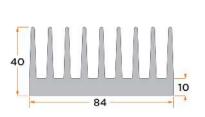


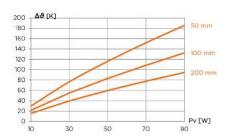
PR 314





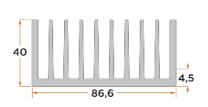

| Pv [W] RthK [K |      | thK [K/V | V]   |
|----------------|------|----------|------|
| 20             | 1,87 | 1,39     | 1,10 |
| 40             | 1,68 | 1,20     | 0,98 |
| 60             | 1,54 | 1,10     | 0,92 |
| 80             |      | 1,04     | 0,86 |
| 100            |      | 0,97     | 0,80 |
| mm             | 50   | 100      | 150  |
| kg/m           | 4,95 |          |      |

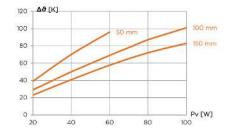

## ALUTRONIC SOLUTIONS FOR COOL RESULTS


PR 193

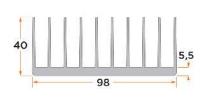


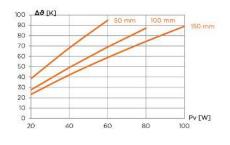
| Pv [W] | Rt   | hK [K/V | V]   |
|--------|------|---------|------|
| 20     | 2,75 | 2,10    | 1,82 |
| 30     | 2,56 | 1,97    | 1,69 |
| 40     | 2,45 | 1,91    | 1,57 |
| 50     |      | 1,85    | 1,48 |
| 60     |      |         | 1,40 |
| mm     | 50   | 100     | 150  |
| kg/m   | 2,92 |         |      |


**PR 388** 



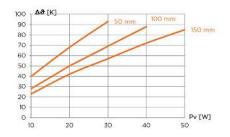




| Pv [W] | Rt   | hK [K/V | <b>V</b> ] |
|--------|------|---------|------------|
| 10     | 2,96 | 2,14    | 1,54       |
| 30     | 2,55 | 1,83    | 1,31       |
| 50     | 2,32 | 1,66    | 1,19       |
| 70     | 2,17 | 1,55    | 1,11       |
| 90     | 2,06 | 1,47    | 1,05       |
| mm     | 50   | 100     | 200        |
| kg/m   | 4,43 |         |            |

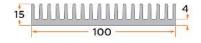

PR 244



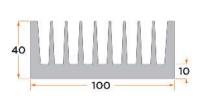


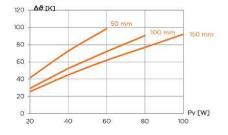

| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 20     | 1,95       | 1,45 | 1,15 |
| 40     | 1,75       | 1,25 | 1,02 |
| 60     | 1,60       | 1,15 | 0,96 |
| 80     |            | 1,09 | 0,90 |
| 100    |            | 1,01 | 0,83 |
| mm     | 50         | 100  | 150  |
| ka/m   |            | 3.66 |      |





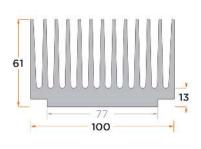

| Pv [W] | R    | thK [K/\ | <b>V</b> ] |
|--------|------|----------|------------|
| 20     | 1,92 | 1,38     | 1,16       |
| 40     | 1,70 | 1,23     | 1,05       |
| 60     | 1,58 | 1,15     | 0,98       |
| 80     |      | 1,09     | 0,93       |
| 100    |      |          | 0,89       |
| mm     | 50   | 100      | 150        |
| kg/m   | 3,04 |          |            |

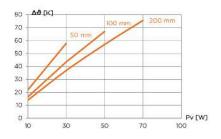


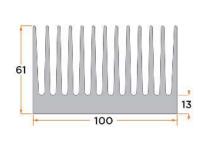

| Pv [W] | RthK [K/W] |     |     |
|--------|------------|-----|-----|
| 10     | 4,0        | 2,8 | 2,3 |
| 20     | 3,4        | 2,5 | 2,1 |
| 30     | 3,1        | 2,3 | 1,9 |
| 40     |            | 2,2 | 1,8 |
| 50     |            |     | 1,7 |
| mm     | 50         | 100 | 150 |
| kg/m   | 2,15       |     |     |

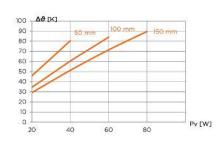



#### PR 173





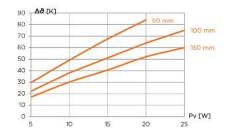


| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
|        | 2,07       | 1,46 | 1,27 |
| 40     | 1,81       | 1,31 | 1,12 |
| 60     | 1,64       | 1,20 | 1,03 |
| 80     |            | 1,13 | 0,96 |
| 100    |            |      | 0,92 |
| mm     | 50         | 100  | 150  |
| kg/m   |            | 5,77 |      |


#### **PR 400**



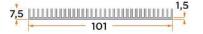


| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 10     | 2,19       | 1,65 | 1,40 |
| 30     | 1,93       | 1,45 | 1,23 |
| 50     |            | 1,34 | 1,14 |
| 70     |            |      | 1,08 |
| 100    |            |      |      |
| mm     | 50         | 100  | 200  |
| kg/m   | 8,30       |      |      |

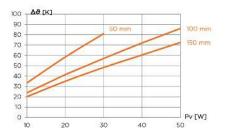




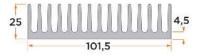

| Pv [W] | RthK [K/W]    |       |      |
|--------|---------------|-------|------|
|        | 2,29          | 1,72  | 1,46 |
| 40     | 2,01          | 1,51  | 1,28 |
| 60     |               | 1,40  | 1,19 |
| 80     |               |       | 1,12 |
| mm     | 50            | 100   | 150  |
| ka/m   | Total Control | 8 4 3 |      |


## - einseitig verrippt

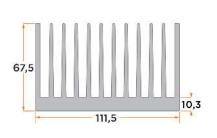
#### **PR 167**

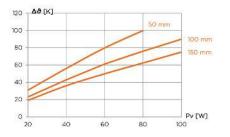



| Pv [W] | RthK [K/W] |     |     |
|--------|------------|-----|-----|
| 5      | 5,9        | 4,4 | 3,4 |
| 10     | 4,9        | 3,8 | 3,0 |
| 15     | 4,5        | 3,4 | 2,7 |
| 20     | 4,2        | 3,2 | 2,6 |
| 25     |            | 3,0 | 2,4 |
| mm     | 50         | 100 | 150 |
| kg/m   | 1,09       |     |     |

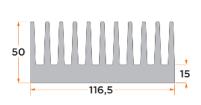

**ALUTRONIC** 

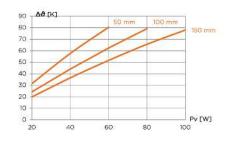



PR 297



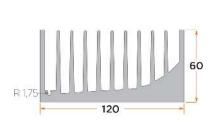

| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 10     | 3,34       | 2,39 | 2,01 |
| 20     | 2,92       | 2,07 | 1,75 |
| 30     | 2,70       | 1,90 | 1,61 |
| 40     |            | 1,80 | 1,51 |
| 50     |            | 1,72 | 1,45 |
| mm     | 50         | 100  | 150  |
| kg/m   | 3,37       |      |      |

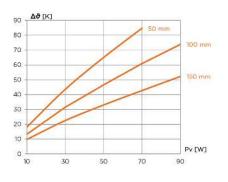




PR 211



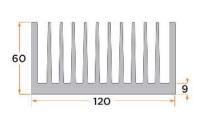


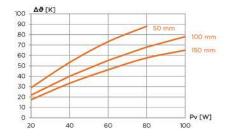

| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 20     | 1,54       | 1,15 | 0,95 |
| 40     | 1,40       | 1,07 | 0,90 |
| 60     | 1,33       | 1,02 | 0,83 |
| 80     | 1,25       | 0,95 | 0,78 |
| 100    |            | 0,90 | 0,75 |
| mm     | 50         | 100  | 150  |
| kg/m   | 9,16       |      |      |





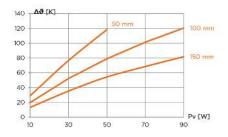

| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 20     | 1,57       | 1,21 | 0,99 |
| 40     | 1,44       | 1,10 | 0,91 |
| 60     | 1,34       | 1,04 | 0,86 |
| 80     |            | 0,99 | 0,82 |
| 100    |            |      | 0,78 |
| mm     | 50         | 100  | 150  |
| kg/m   | 8,65       |      |      |





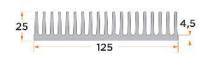

| Pv [W] | [W] RthK [K/W] |      | V]   |
|--------|----------------|------|------|
| 10     | 1,81           | 1,33 | 0,98 |
| 30     | 1,45           | 1,05 | 0,75 |
| 50     | 1,30           | 0,93 | 0,66 |
| 70     | 1,21           | 0,87 | 0,61 |
| 90     |                | 0,82 | 0,58 |
| mm     | 50             | 100  | 150  |
| kg/m   | 8,43           |      |      |


PR 403





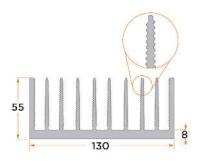
| Pv [W] | [W] RthK [K/W] |      | V]   |
|--------|----------------|------|------|
| 20     | 1,45           | 1,09 | 0,87 |
| 40     | 1,33           | 1    | 0,83 |
| 60     | 1,22           | 0,92 | 0,77 |
| 80     | 1,1            | 0,85 | 0,72 |
| 100    |                | 0,78 | 0,65 |
| mm     | 50             | 100  | 150  |
| kg/m   | 8,40           |      |      |

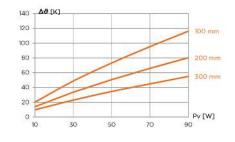

PR 331



| Pv [W] | RthK [K/W] |      |      |  |
|--------|------------|------|------|--|
| 10     | 2,91       | 1,99 | 1,34 |  |
| 30     | 2,56       | 1,75 | 1,18 |  |
| 50     | 2,37       | 1,58 | 1,09 |  |
| 70     |            | 1,45 | 0,98 |  |
| 90     |            | 1,34 | 0,91 |  |
| mm     | 50         | 100  | 150  |  |
| kg/m   | 3,07       |      |      |  |

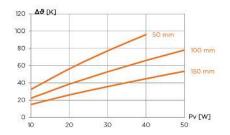
| 1 |     | Q Q |
|---|-----|-----|
|   |     |     |
| - | 125 | -   |


**PR 228** 

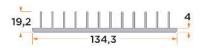



|   |   | 50 mm | · .    |
|---|---|-------|--------|
| 1 |   |       | 100 mm |
|   | / |       | 150 mm |
|   |   |       |        |
| / |   |       |        |
|   |   |       |        |
|   |   |       |        |
|   |   |       | Pv [W] |

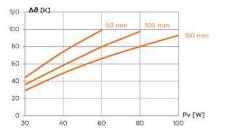
| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 10     | 3,02       | 2,17 | 1,82 |
| 20     | 2,62       | 1,86 | 1,57 |
| 30     | 2,41       | 1,70 | 1,44 |
| 40     | 2,27       | 1,60 | 1,35 |
| 50     |            | 1,52 | 1,29 |
| mm     | 50         | 100  | 150  |
| ka/m   |            | 4.22 |      |


**PR 377** 

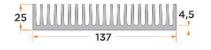




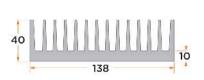

| Pv [W] | RthK [K/W] |      |      |  |
|--------|------------|------|------|--|
| 10     | 2,00       | 1,39 | 0,97 |  |
| 30     | 1,62       | 1,12 | 0,76 |  |
| 50     | 1,46       | 1,01 | 0,69 |  |
| 70     | 1,36       | 0,94 | 0,64 |  |
| 90     | 1,29       | 0,89 | 0,61 |  |
| mm     | 100        | 200  | 300  |  |
| kg/m   |            | 6,63 |      |  |

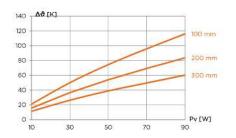

**ALUTRONIC** 




| Pv [W] | Rt   | V]   |      |  |
|--------|------|------|------|--|
| 10     | 3,24 | 2,22 | 1,49 |  |
| 20     | 2,81 | 1,93 | 1,30 |  |
| 30     | 2,57 | 1,76 | 1,19 |  |
| 40     | 2,40 | 1,65 | 1,12 |  |
| 50     |      | 1,56 | 1,07 |  |
| mm     | 50   | 100  | 150  |  |
| kg/m   |      | 2,22 |      |  |




**PR 287** 

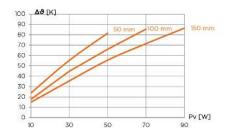



| Pv [W] | Rt   | V]   |      |
|--------|------|------|------|
| 20     | 2,20 | 1,80 | 1,45 |
| 40     | 1,85 | 1,46 | 1,23 |
| 60     | 1,65 | 1,33 | 1,10 |
| 80     |      | 1,22 | 1,00 |
| 100    |      |      | 0,93 |
| mm     | 50   | 100  | 150  |
| kg/m   |      | 4,68 |      |

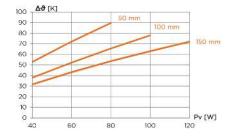


PR 381

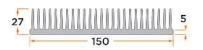




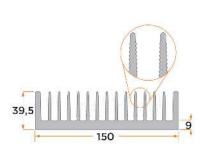

| Pv [W] | R    | V]   |      |
|--------|------|------|------|
| 10     | 2,12 | 1,58 | 1,15 |
| 30     | 1,67 | 1,22 | 0,88 |
| 50     | 1,49 | 1,08 | 0,78 |
| 70     | 1,37 | 0,99 | 0,71 |
| 90     | 1,29 | 0,93 | 0,67 |
| mm     | 100  | 200  | 300  |
| ka/m   | 7.29 |      |      |

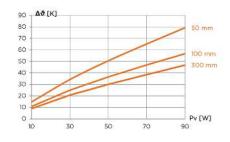






**PR 148** 

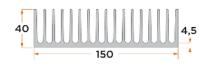



| Pv [W] | RthK [K/W] |      | <b>V</b> ] |
|--------|------------|------|------------|
| 10     | 2,38       | 1,76 | 1,48       |
| 30     | 1,84       | 1,49 | 1,18       |
| 50     | 1,63       | 1,32 | 1,11       |
| 70     |            | 1,22 | 1,02       |
| 90     |            |      | 0,96       |
| mm     | 50         | 100  | 150        |
| kg/m   |            | 5,17 |            |




| Pv [W] | RthK [K/W] |      |      |  |
|--------|------------|------|------|--|
| 40     | 1,32       | 0,95 | 0,79 |  |
| 60     | 1,20       | 0,87 | 0,72 |  |
| 80     | 1,12       | 0,82 | 0,67 |  |
| 100    |            | 0,78 | 0,63 |  |
| 120    |            |      | 0,60 |  |
| mm     | 50         | 100  | 150  |  |
| kg/m   |            | 8,01 |      |  |

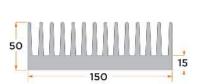


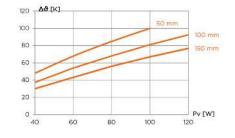

PR 369





| Pv [W] | R    | thK [K/V | V]   |
|--------|------|----------|------|
| 10     | 1,47 | 1,08     | 0,89 |
| 30     | 1,14 | 0,83     | 0,69 |
| 50     | 1,01 | 0,73     | 0,60 |
| 70     | 0,93 | 0,67     | 0,55 |
| 90     | 0,88 | 0,63     | 0,52 |
| mm     | 50   | 100      | 300  |
| kg/m   |      | 7,27     |      |


PR 242




| 00  |  | 50 mi | n      |
|-----|--|-------|--------|
| 8.5 |  |       | 100 mm |
| 80  |  |       | 150 mm |
| 60  |  |       |        |
| 40  |  |       |        |
| 20  |  |       | -      |
| ٥ 💷 |  |       | Pv [W] |

| Pv [W] | RthK [K/W] |      |      |  |
|--------|------------|------|------|--|
| 40     | 1,20       | 0,93 | 0,75 |  |
| 60     | 1,13       | 0,90 | 0,72 |  |
| 80     | 1,06       | 0,85 | 0,70 |  |
| 100    | 1,00       | 0,81 | 0,67 |  |
| 120    |            | 0,77 | 0,64 |  |
| mm     | 50         | 100  | 150  |  |
| ka/m   |            | 6.28 |      |  |

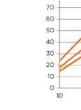
**PR 172** 





150 mm

Pv [W]


90

70

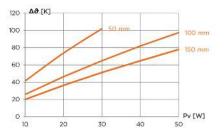
| Pv [W] | R    | thK [K/V | V]   |
|--------|------|----------|------|
| 40     | 1,19 | 0,97     | 0,80 |
| 60     | 1,10 | 0,90     | 0,74 |
| 80     | 1,05 | 0,84     | 0,70 |
| 100    |      | 0,80     | 0,66 |
| 120    |      |          | 0,63 |
| mm     | 50   | 100      | 150  |
| kg/m   |      | 11,97    |      |

**ALUTRONIC** 

PR 162



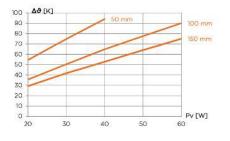
80


**∆**∂ [K]

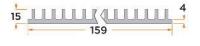
30

| Pv [W] | RthK [K/W] |      |      |  |
|--------|------------|------|------|--|
| 10     | 2,37       | 1,79 | 1,46 |  |
| 30     | 1,91       | 1,47 | 1,22 |  |
| 50     | 1,68       | 1,30 | 1,08 |  |
| 70     | 777        | 1,19 | 1,00 |  |
| 90     |            |      | 0,94 |  |
| mm     | 50         | 100  | 150  |  |
| kg/m   |            | 6,11 |      |  |

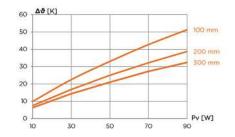
# 27 150,6


PR 310



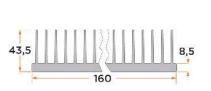

| Pv [W] | Rt   | hK [K/V | V]   |
|--------|------|---------|------|
| 10     | 4,15 | 2,58    | 2,00 |
| 20     | 3,69 | 2,32    | 1,82 |
| 30     | 3,40 | 2,16    | 1,71 |
| 40     |      | 2,05    | 1,62 |
| 50     |      | 1,95    | 1,56 |
| mm     | 50   | 100     | 150  |
| kg/m   |      | 2,51    |      |

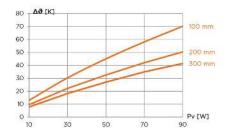



**PR 158** 



| Pv [W] | RthK [K/W] |      |      |  |
|--------|------------|------|------|--|
| 20     | 2,72       | 1,78 | 1,46 |  |
| 30     | 2,49       | 1,68 | 1,39 |  |
| 40     | 2,35       | 1,62 | 1,32 |  |
| 50     |            | 1,55 | 1,28 |  |
| 60     |            | 1,50 | 1,25 |  |
| mm     | 50         | 100  | 150  |  |
| kg/m   |            | 3,20 |      |  |






| Pv [W] | Rt   | thK [K/V | V]   |
|--------|------|----------|------|
| 10     | 0,99 | 0,75     | 0,63 |
| 30     | 0,75 | 0,56     | 0,48 |
| 50     | 0,66 | 0,50     | 0,42 |
| 70     | 0,61 | 0,46     | 0,39 |
| 90     | 0,57 | 0,43     | 0,36 |
| mm     | 100  | 200      | 300  |
| kg/m   |      | 17,70    |      |

PR 384






150 mm

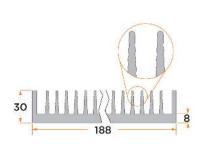
Pv [W]

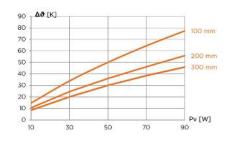
| Pv [W] | RthK [K/W] |      |      |  |
|--------|------------|------|------|--|
| 10     | 1,30       | 0,96 | 0,78 |  |
| 30     | 1,01       | 0,74 | 0,61 |  |
| 50     | 0,90       | 0,65 | 0,54 |  |
| 70     | 0,83       | 0,60 | 0,50 |  |
| 90     | 0,78       | 0,56 | 0,46 |  |
| mm     | 100        | 200  | 300  |  |
| kg/m   |            | 6,75 |      |  |

PR 174



| Pv [W] | RthK [K/W] |      |      |  |
|--------|------------|------|------|--|
| 20     | 1,89       | 1,37 | 1,13 |  |
| 40     | 1,62       | 1,20 | 1,01 |  |
| 60     | 1,49       | 1,09 | 0,94 |  |
| 80     |            | 1,03 | 0,88 |  |
| 100    |            |      | 0,84 |  |
| mm     | 50         | 100  | 150  |  |
| kg/m   |            | 4,01 |      |  |

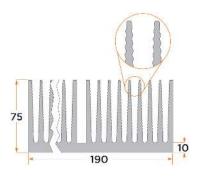

# PR 385

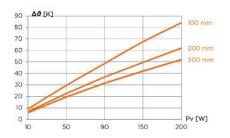



Δθ [K]

|  |   |   | 100 mm |
|--|---|---|--------|
|  |   |   | 200 mm |
|  |   |   | 300 mm |
|  |   |   |        |
|  | - | - |        |
|  |   |   | Pv [W] |

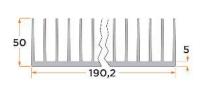
| Pv [W] | R    | thK [K/V | V]   |
|--------|------|----------|------|
| 10     | 1,71 | 1,22     | 0,94 |
| 30     | 1,30 | 0,95     | 0,78 |
| 50     | 1,14 | 0,84     | 0,69 |
| 70     | 1,05 | 0,77     | 0,64 |
| 90     | 0,98 | 0,72     | 0,60 |
| mm     | 100  | 200      | 300  |
| kg/m   |      | 4,22     |      |

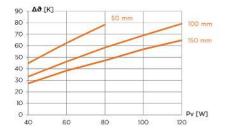


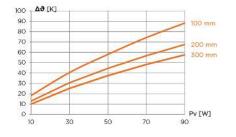

| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 10     | 1,47       | 1,06 | 0,84 |
| 30     | 1,13       | 0,82 | 0,67 |
| 50     | 1,00       | 0,72 | 0,60 |
| 70     | 0,92       | 0,66 | 0,55 |
| 90     | 0,86       | 0,62 | 0,51 |
| mm     | 100        | 200  | 300  |
| kg/m   | 7,38       |      |      |

**ALUTRONIC** 

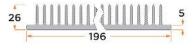

# PR 379



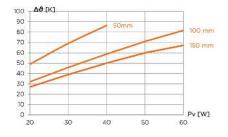




| Pv [W] | Rt    | V]   |      |
|--------|-------|------|------|
| 10     | 0,90  | 0,68 | 0,58 |
| 50     | 0,59  | 0,45 | 0,39 |
| 90     | 0,54  | 0,41 | 0,35 |
| 150    | 0,45  | 0,33 | 0,28 |
| 200    | 0,42  | 0,31 | 0,26 |
| mm     | 100   | 200  | 300  |
| kg/m   | 17,89 |      |      |

# PR 163

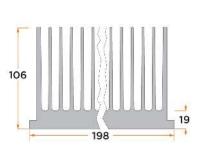


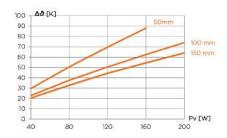




| Pv [W] | R    | V]   |      |
|--------|------|------|------|
| 40     | 1,12 | 0,83 | 0,68 |
| 60     | 1,04 | 0,77 | 0,64 |
| 80     | 0,98 | 0,73 | 0,59 |
| 100    |      | 0,69 | 0,57 |
| 120    |      | 0,66 | 0,54 |
| mm     | 50   | 100  | 150  |
| kg/m   |      | 6,92 |      |



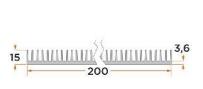
| Pv [W] | R1   | RthK [K/W] |      |  |
|--------|------|------------|------|--|
| 10     | 1,83 | 1,30       | 1,00 |  |
| 30     | 1,35 | 1,02       | 0,84 |  |
| 50     | 1,16 | 0,89       | 0,75 |  |
| 70     | 1,06 | 0,81       | 0,69 |  |
| 90     | 0,98 | 0,75       | 0,64 |  |
| mm     | 100  | 200        | 300  |  |
| kg/m   | 5,63 |            |      |  |

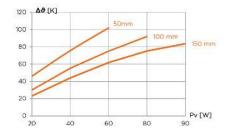


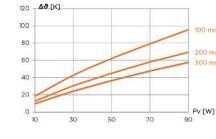



| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
|        | 2,45       | 1,60 | 1,35 |
| 30     | 2,30       | 1,53 | 1,30 |
| 40     | 2,16       | 1,47 | 1,25 |
| 50     |            | 1,42 | 1,20 |
| 60     |            | 1,36 | 1,12 |
| mm     | 50         | 100  | 150  |
| kg/m   | 3,50       |      |      |

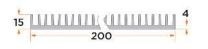

# PR 392

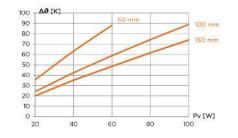




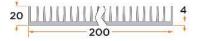


| Pv [W] | R     | thK [K/V | V]   |
|--------|-------|----------|------|
| 40     | 0,74  | 0,57     | 0,51 |
| 80     | 0,63  | 0,47     | 0,41 |
| 120    | 0,58  | 0,42     | 0,37 |
| 160    | 0,55  | 0,39     | 0,34 |
| 200    |       | 0,37     | 0,32 |
| mm     | 50    | 100      | 150  |
| kg/m   | 22,30 |          |      |

**PR 240** 

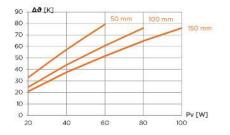


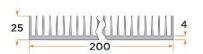

| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 20     | 2,30       | 1,50 | 1,15 |
| 40     | 1,89       | 1,38 | 1,10 |
| 60     | 1,70       | 1,25 | 1,03 |
| 80     |            | 1,15 | 0,94 |
| 90     |            |      | 0,93 |
| mm     | 50         | 100  | 150  |
| kg/m   | 3,45       |      |      |



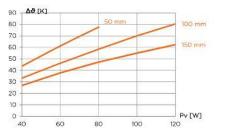

| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 10     | 1,84       | 1,27 | 0,97 |
| 30     | 1,42       | 1,02 | 0,81 |
| 50     | 1,24       | 0,90 | 0,73 |
| 70     | 1,13       | 0,83 | 0,68 |
| 90     | 1,06       | 0,77 | 0,64 |
| mm     | 100        | 200  | 300  |
| kg/m   | 3,90       |      |      |



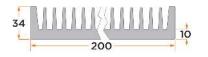


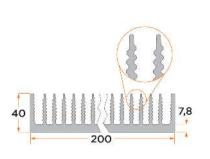


| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 20     | 1,78       | 1,21 | 1,00 |
| 40     | 1,58       | 1,06 | 0,88 |
| 60     | 1,47       | 0,98 | 0,81 |
| 80     |            | 0,93 | 0,77 |
| 100    |            | 0,89 | 0,74 |
| mm     | 50         | 100  | 150  |
| kg/m   | 4,25       |      |      |




#### **PR 165**

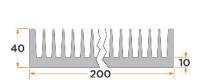


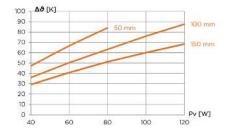

| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 20     | 1,65       | 1,23 | 1,04 |
| 40     | 1,43       | 1,10 | 0,94 |
| 60     | 1,32       | 1,01 | 0,86 |
| 80     |            | 0,95 | 0,81 |
| 100    |            |      | 0,76 |
| mm     | 50         | 100  | 150  |
| kg/m   |            | 4.76 |      |




## PR 328

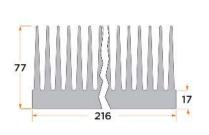


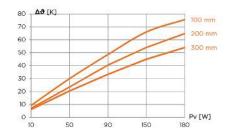

| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 40     | 1,09       | 0,83 | 0,67 |
| 60     | 1,02       | 0,77 | 0,63 |
| 80     | 0,97       | 0,73 | 0,59 |
| 100    |            | 0,70 | 0,55 |
| 120    |            | 0,67 | 0,52 |
| mm     | 50         | 100  | 150  |
| kg/m   | 10,03      |      |      |





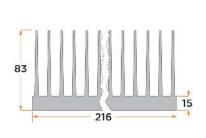


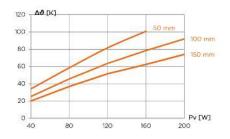





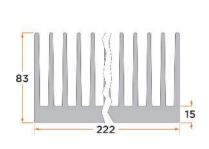

| Pv [W] | R     | thK [K/V | V]   |
|--------|-------|----------|------|
| 40     | 1,18  | 0,90     | 0,73 |
| 60     | 1,11  | 0,84     | 0,68 |
| 80     | 1,05  | 0,79     | 0,64 |
| 100    |       | 0,76     | 0,60 |
| 120    |       | 0,73     | 0,57 |
| mm     | 50    | 100      | 150  |
| kg/m   | 10,68 |          |      |

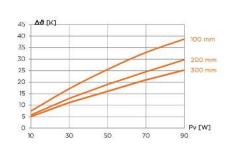

PR 375






| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 10     | 0,93       | 0,71 | 0,62 |
| 50     | 0,60       | 0,47 | 0,41 |
| 90     | 0,54       | 0,45 | 0,37 |
| 150    | 0,44       | 0,36 | 0,30 |
| 180    | 0,42       | 0,36 | 0,30 |
| mm     | 100        | 200  | 300  |
| kg/m   | 23,96      |      |      |

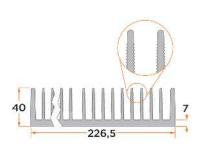

PR 236





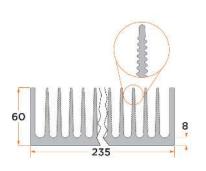

| Pv [W] | RthK [K/W] |      |      |  |
|--------|------------|------|------|--|
| 40     | 0,85       | 0,63 | 0,50 |  |
| 80     | 0,73       | 0,57 | 0,46 |  |
| 120    | 0,68       | 0,53 | 0,43 |  |
| 160    | 0,63       | 0,49 | 0,39 |  |
| 200    |            | 0,46 | 0,37 |  |
| mm     | 50         | 100  | 150  |  |
| kg/m   | 18,69      |      |      |  |

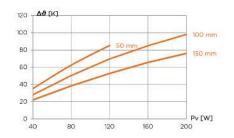
PR 391





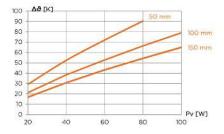

| Pv [W] | R     | thK [K/V | V]   |
|--------|-------|----------|------|
| 10     | 0,74  | 0,57     | 0,50 |
| 30     | 0,57  | 0,43     | 0,37 |
| 50     | 0,51  | 0,38     | 0,32 |
| 70     | 0,47  | 0,35     | 0,30 |
| 90     | 0,43  | 0,33     | 0,28 |
| mm     | 100   | 200      | 300  |
| ka/m   | 22,35 |          |      |


**ALUTRONIC** 

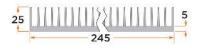

#### **PR 149**

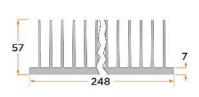


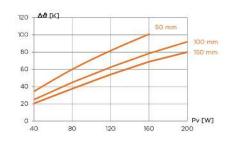



#### PR 235



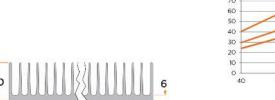


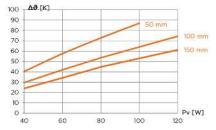


| Pv [W] | R    | V]    |      |
|--------|------|-------|------|
| 40     | 0,88 | 0,70  | 0,55 |
| 80     | 0,78 | 0,63  | 0,48 |
| 120    | 0,71 | 0,58  | 0,44 |
| 160    |      | 0,53  | 0,41 |
| 200    |      | 0,49  | 0,38 |
| mm     | 50   | 100   | 150  |
| kg/m   |      | 15,23 |      |


## **PR 166**



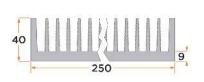
| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 20     | 1,46       | 1,06 | 0,84 |
| 40     | 1,31       | 0,96 | 0,77 |
| 60     | 1,20       | 0,88 | 0,72 |
| 80     | 1,13       | 0,83 | 0,68 |
| 100    |            | 0,79 | 0,65 |
| mm     | 50         | 100  | 150  |
| ka/m   |            | 6.12 |      |

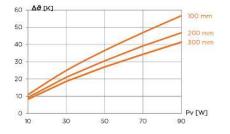




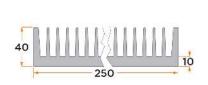

| Pv [W] | R    | /]    |      |
|--------|------|-------|------|
| 40     | 0,86 | 0,62  | 0,51 |
| 80     | 0,75 | 0,56  | 0,47 |
| 120    | 0,68 | 0,52  | 0,45 |
| 160    | 0,63 | 0,49  | 0,43 |
| 200    |      | 0,46  | 0,40 |
| mm     | 50   | 100   | 150  |
| ka/m   |      | 11.47 |      |

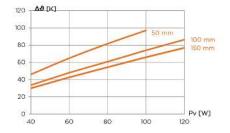


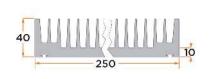



| Pv [W] | RthK [K/W] |      | V]   |
|--------|------------|------|------|
| 40     | 1,01       | 0,74 | 0,60 |
| 60     | 0,96       | 0,70 | 0,57 |
| 80     | 0,91       | 0,67 | 0,56 |
| 100    | 0,87       | 0,64 | 0,53 |
| 120    |            | 0,62 | 0,51 |
| mm     | 50         | 100  | 150  |
| kg/m   | 10,21      |      |      |


# PR 396





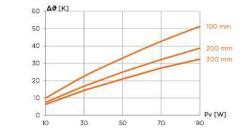


| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 10     | 1,09       | 0,93 | 0,82 |
| 30     | 0,83       | 0,70 | 0,62 |
| 50     | 0,73       | 0,61 | 0,54 |
| 70     | 0,67       | 0,56 | 0,49 |
| 90     | 0,63       | 0,52 | 0,46 |
| mm     | 100        | 200  | 300  |
| kg/m   | 12,27      |      |      |

# PR 325



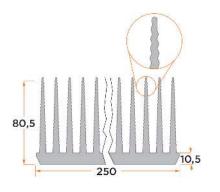


| Pv [W] | RthK [K/W] |      |      |  |
|--------|------------|------|------|--|
| 40     | 1,15       | 0,84 | 0,75 |  |
| 60     | 1,08       | 0,80 | 0,71 |  |
| 80     | 1,02       | 0,76 | 0,68 |  |
| 100    | 0,97       | 0,74 | 0,66 |  |
| 120    |            | 0,72 | 0,64 |  |
| mm     | 50         | 100  | 150  |  |
| kg/m   | 13,22      |      |      |  |

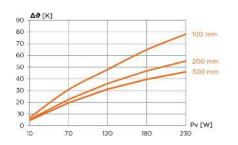



| 00  |     | 50.1 |        |
|-----|-----|------|--------|
| 80  |     | 301  | 100 mm |
| 60  |     |      |        |
| 40  | 100 |      |        |
| 20  |     |      |        |
| ٥ 🗀 |     |      | Pv [W] |

| Pv [W] | R     | RthK [K/W] |      |  |
|--------|-------|------------|------|--|
| 40     | 1,16  | 0,85       | 0,75 |  |
| 60     | 1,09  | 0,81       | 0,71 |  |
| 80     | 1,03  | 0,77       | 0,69 |  |
| 100    | 0,98  | 0,75       | 0,67 |  |
| 120    |       | 0,73       | 0,65 |  |
| mm     | 50    | 100        | 150  |  |
| ka/m   | 13.58 |            |      |  |

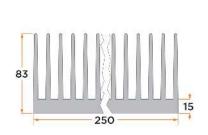

# ALUTRONIC SOLUTIONS FOR COOL RESULTS

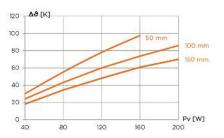
PR 372



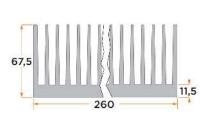

| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 10     | 0,99       | 0,75 | 0,63 |
| 30     | 0,75       | 0,56 | 0,48 |
| 50     | 0,66       | 0,50 | 0,42 |
| 70     | 0,61       | 0,46 | 0,39 |
| 90     | 0,57       | 0,43 | 0,36 |
| mm     | 100        | 200  | 300  |
| kg/m   | 17,70      |      |      |

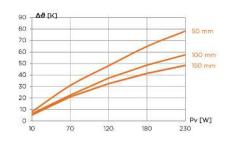
# PR 380





250

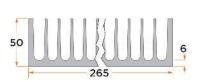


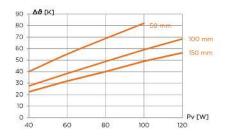

| Pv [W] | RthK [K/W] |      | V]   |
|--------|------------|------|------|
| 10     | 0,69       | 0,53 | 0,45 |
| 70     | 0,44       | 0,32 | 0,28 |
| 120    | 0,40       | 0,30 | 0,26 |
| 180    | 0,36       | 0,26 | 0,22 |
| 230    | 0,34       | 0,24 | 0,20 |
| mm     | 100        | 200  | 300  |
| kg/m   | 21,34      |      |      |


# PR 237



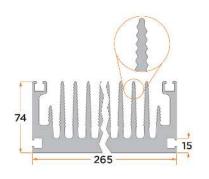


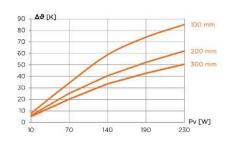

| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 40     | 0,75       | 0,60 | 0,45 |
| 80     | 0,69       | 0,54 | 0,43 |
| 120    | 0,65       | 0,50 | 0,40 |
| 160    | 0,61       | 0,46 | 0,38 |
| 200    |            | 0,43 | 0,35 |
| mm     | 50         | 100  | 150  |
| kg/m   | 24,68      |      |      |





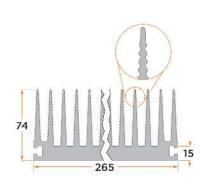

| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 10     | 0,79       | 0,62 | 0,52 |
| 70     | 0,44       | 0,32 | 0,30 |
| 120    | 0,40       | 0,31 | 0,27 |
| 180    | 0,36       | 0,27 | 0,23 |
| 230    | 0,34       | 0,25 | 0,21 |
| mm     | 50         | 100  | 150  |
| kg/m   | 20,62      |      |      |





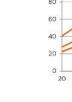

| Pv [W] | R     | thK [K/V | 'W]  |  |
|--------|-------|----------|------|--|
| 40     | 1,00  | 0,69     | 0,56 |  |
| 60     | 0,92  | 0,64     | 0,53 |  |
| 80     | 0,86  | 0,61     | 0,50 |  |
| 100    | 0,82  | 0,59     | 0,49 |  |
| 120    |       | 0,57     | 0,47 |  |
| mm     | 50    | 100      | 150  |  |
| kg/m   | 12,70 |          |      |  |


#### **PR 376**






| Pv [W] | Rt    | thK [K/V | V]   |
|--------|-------|----------|------|
| 10     | 0,78  | 0,60     | 0,51 |
| 70     | 0,49  | 0,36     | 0,29 |
| 140    | 0,42  | 0,29     | 0,24 |
| 190    | 0,39  | 0,28     | 0,23 |
| 230    | 0,37  | 0,27     | 0,22 |
| mm     | 100   | 200      | 300  |
| kg/m   | 25,04 |          |      |

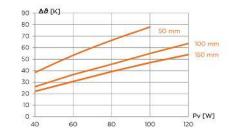

# **PR 186**



15 300 300

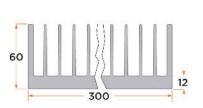


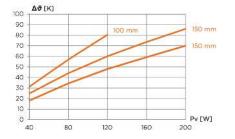
**PR 247** 




| , |   | 50 mm |     | 100 m |
|---|---|-------|-----|-------|
| 0 |   |       |     | 150 m |
|   | / |       | 100 |       |
|   |   |       |     | 7.    |
|   |   |       |     |       |
| , |   |       |     | Pv [W |

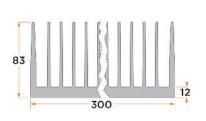
| Pv [W] | [W] RthK [K/W] |      | V]   |
|--------|----------------|------|------|
| 20     | 2,03           | 1,39 | 1,12 |
| 40     | 1,76           | 1,22 | 0,99 |
| 60     | 1,61           | 1,12 | 0,92 |
| 80     |                | 1,06 | 0,87 |
| 100    |                | 1,00 | 0,83 |
| mm     | 50             | 100  | 150  |
| ka/m   |                | 5.43 |      |

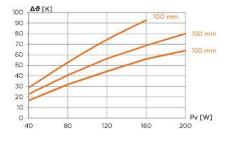

# ALUTRONIC SOLUTIONS FOR COOL RESULTS


#### PR 171

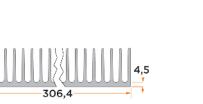


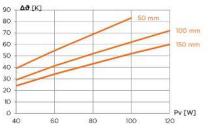
| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 40     | 40 0,96    |      | 0,55 |
| 60     | 0,89       | 0,61 | 0,51 |
| 80     | 0,83       | 0,57 | 0,49 |
| 100    | 0,78       | 0,55 | 0,47 |
| 120    |            | 0,53 | 0,45 |
| mm     | 50         | 100  | 150  |
| kg/m   | 15,45      |      |      |


#### **PR 360**



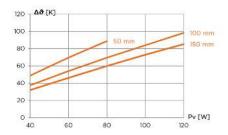




| Pv [W] | [W] RthK [K/W] | V]    |      |
|--------|----------------|-------|------|
| 40     | 0,78           | 0,62  | 0,45 |
| 80     | 0,71           | 0,55  | 0,43 |
| 120    | 0,67           | 0,50  | 0,40 |
| 160    |                | 0,46  | 0,37 |
| 200    |                | 0,43  | 0,35 |
| mm     | 100            | 150   | 200  |
| kg/m   |                | 18,33 |      |


# PR 304

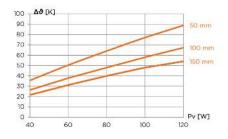




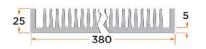

| Pv [W] | R     | thK [K/V | W]   |
|--------|-------|----------|------|
| 40     | 0,72  | 0,57     | 0,42 |
| 80     | 0,66  | 0,51     | 0,40 |
| 120    | 0,62  | 0,47     | 0,37 |
| 160    | 0,58  | 0,43     | 0,35 |
| 200    |       | 0,40     | 0,32 |
| mm     | 100   | 150      | 200  |
| kg/m   | 23,88 |          |      |



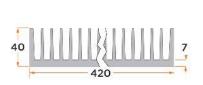


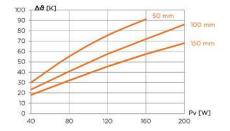

| Pv [W] | R     | V]   |      |
|--------|-------|------|------|
| 40     | 0,98  | 0,73 | 0,60 |
| 60     | 0,91  | 0,69 | 0,57 |
| 80     | 0,86  | 0,65 | 0,54 |
| 100    | 0,83  | 0,62 | 0,52 |
| 120    |       | 0,60 | 0,50 |
| mm     | 50    | 100  | 150  |
| ka/m   | 12.38 |      |      |



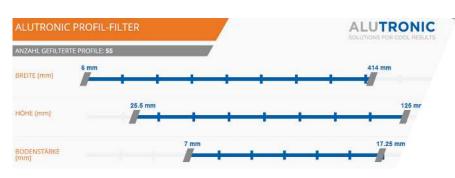



| Pv [W] | W] RthK [K/W] |       | V]   |
|--------|---------------|-------|------|
| 40     | 1,22          | 0,94  | 0,80 |
| 60     | 1,16          | 0,90  | 0,77 |
| 80     | 1,11          | 0,87  | 0,75 |
| 100    |               | 0,84  | 0,73 |
| 120    |               | 0,82  | 0,71 |
| mm     | 50            | 100   | 150  |
| kg/m   |               | 12,44 |      |


#### **PR 178**



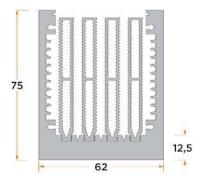

| Pv [W] | R     | thK [K/V | V]   |
|--------|-------|----------|------|
| 40     | 0,89  | 0,66     | 0,54 |
| 60     | 0,84  | 0,63     | 0,52 |
| 80     | 0,80  | 0,60     | 0,50 |
| 100    | 0,77  | 0,58     | 0,48 |
| 120    | 0,74  | 0,56     | 0,45 |
| mm     | 50    | 100      | 150  |
| ka/m   | 12.45 |          |      |

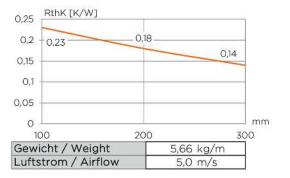



# PR 300

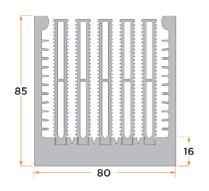





| Pv [W] | R     | thK [K/V | V]   |
|--------|-------|----------|------|
| 40     | 0,75  | 0,58     | 0,45 |
| 80     | 0,69  | 0,51     | 0,40 |
| 120    | 0,63  | 0,48     | 0,38 |
| 160    | 0,57  | 0,45     | 0,36 |
| 200    |       | 0,43     | 0,34 |
| mm     | 50    | 100      | 150  |
| kg/m   | 19,32 |          |      |

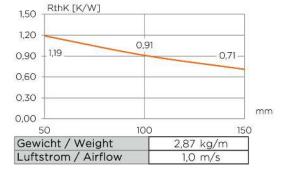



Der Alutronic Profilfilter unterstützt online bei der Wahl des passenden Standardprofils, schnell und übersichtlich. Filtern Sie nach Breite, Höhe und Bodenstärke!


Auf den folgenden Seiten finden Sie unsere Standardprofile für Fremdbelüftung

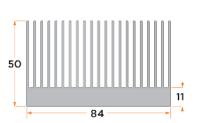
#### PR 715






#### **PR 716**

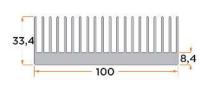


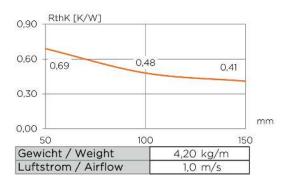


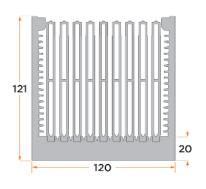






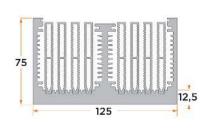


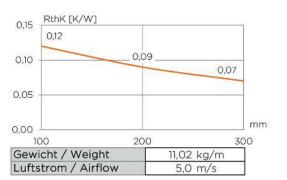





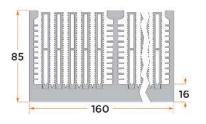

PR 399



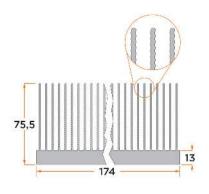


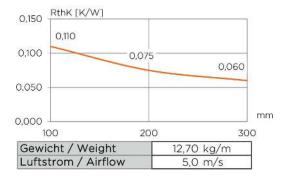




PR 718

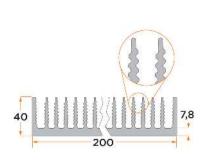




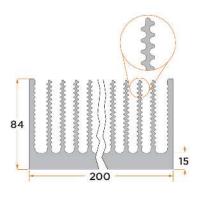

**ALUTRONIC** 

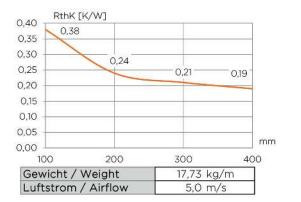

#### PR 719






#### PR 395

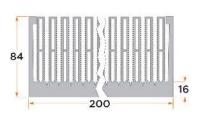



## PR 370

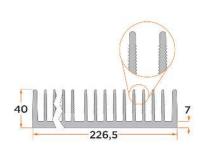


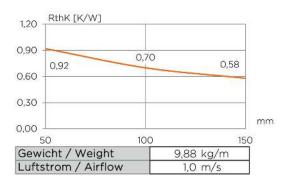




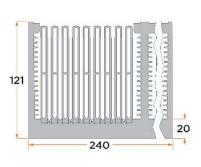


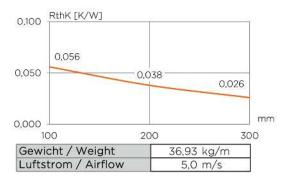


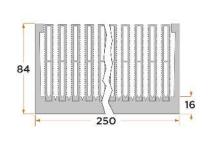


PR 253

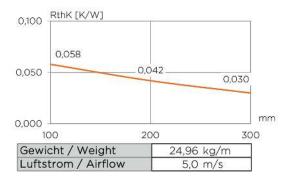






**PR 149** 

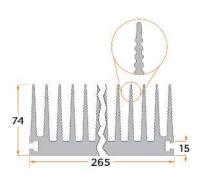






**PR 720** 

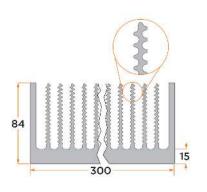


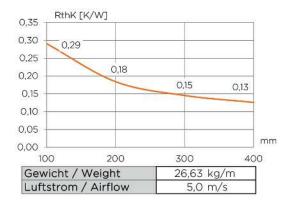



PR 252

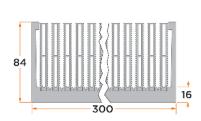


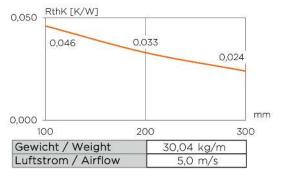


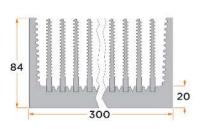

**ALUTRONIC** 

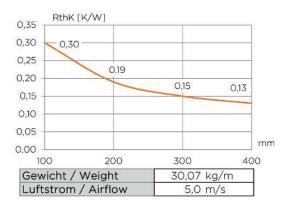

# PR 186

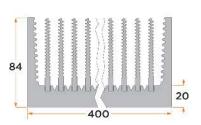


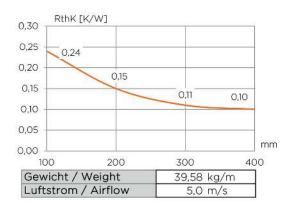




#### **PR 368**

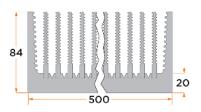


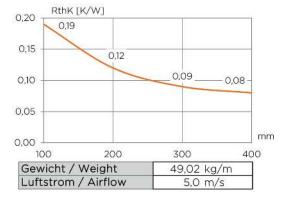





## PR 254





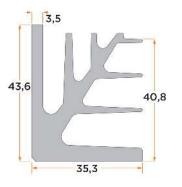


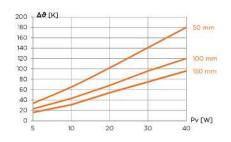



PR 257



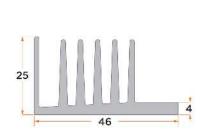


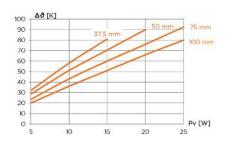




Von Alutronic gesägte Profile werden stets bürst- entgratet und somit gratfrei geliefert.

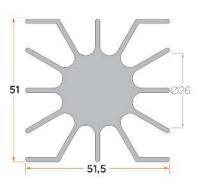


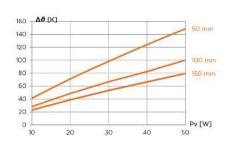
Auf den folgenden Seiten finden Sie weitere Standardprofile mit verschiedenen Bauformen


# PR 394



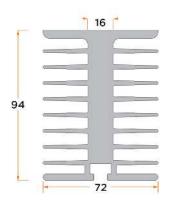


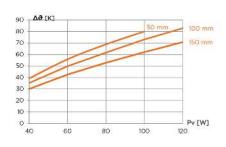


| Pv [W] | R    | V]   |      |
|--------|------|------|------|
| 5      | 6,70 | 4,60 | 3,20 |
| 10     | 6,50 | 4,30 | 3,10 |
| 20     | 5,10 | 3,40 | 2,70 |
| 30     | 4,70 | 3,20 | 2,50 |
| 40     | 4,50 | 3,00 | 2,40 |
| mm     | 50   | 100  | 150  |
| kg/m   |      | 1.79 |      |


# PR 113



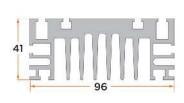


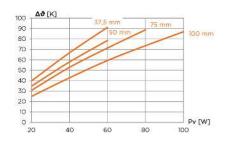

| Pv [W] | RthK [K/W] |     |     |     |
|--------|------------|-----|-----|-----|
| 5      | 6,4        | 5,7 | 4,7 | 4,0 |
| 10     | 5,8        | 5,1 | 4,3 | 3,6 |
| 15     | 5,4        | 4,7 | 4,0 | 3,4 |
| 20     |            | 4,5 | 3,8 | 3,3 |
| 25     |            |     | 3,7 | 3,2 |
| mm     | 37,5       | 50  | 75  | 100 |
| kg/m   |            | 1,  | 10  |     |





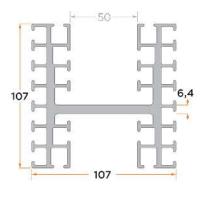

| Pv [W] | RthK [K/W] |      |      |
|--------|------------|------|------|
| 10     | 4,11       | 2,83 | 2,29 |
| 20     | 3,55       | 2,42 | 1,94 |
| 30     | 3,27       | 2,22 | 1,77 |
| 40     | 3,10       | 2,06 | 1,66 |
| 50     | 2,97       | 2,00 | 1,59 |
| mm     | 50         | 100  | 150  |
| ka/m   |            | 2.50 |      |

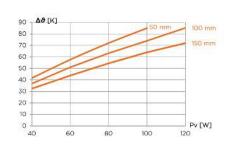


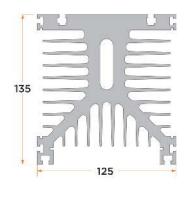


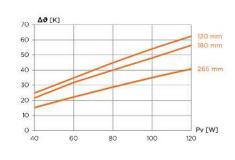

| Pv [W] | R    | V]   |      |
|--------|------|------|------|
| 40     | 0,98 | 0,88 | 0,75 |
| 60     | 0,93 | 0,83 | 0,71 |
| 80     | 0,86 | 0,77 | 0,66 |
| 100    | 0,80 | 0,73 | 0,62 |
| 120    |      | 0,69 | 0,59 |
| mm     | 50   | 100  | 150  |
| kg/m   |      | 7,79 |      |


PR 221



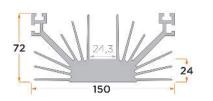


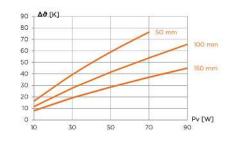


| Pv [W] | ] RthK [K/W] |      | [K/W] |      |
|--------|--------------|------|-------|------|
| 20     | 1,99         | 1,74 | 1,54  | 1,25 |
| 40     | 1,67         | 1,45 | 1,32  | 1,07 |
| 60     | 1,52         | 1,31 | 1,19  | 0,99 |
| 80     |              |      | 1,11  | 0,92 |
| 100    |              |      |       | 0,87 |
| mm     | 37,5         | 50   | 75    | 100  |
| kg/m   |              | 4,   | 88    |      |


# PR 210





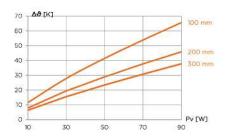

| Pv [W] | RthK [K/W] |      |      |  |
|--------|------------|------|------|--|
| 40     | 1,04       | 0,92 | 0,81 |  |
| 60     | 0,96       | 0,85 | 0,73 |  |
| 80     | 0,90       | 0,79 | 0,68 |  |
| 100    | 0,85       | 0,74 | 0,64 |  |
| 120    |            | 0,71 | 0,60 |  |
| mm     | 50         | 100  | 150  |  |
| kg/m   |            | 7,17 |      |  |






| Pv [W] | R1   | V]    |      |
|--------|------|-------|------|
| 40     | 0,62 | 0,54  | 0,38 |
| 60     | 0,58 | 0,53  | 0,37 |
| 80     | 0,56 | 0,50  | 0,36 |
| 100    | 0,54 | 0,48  | 0,35 |
| 120    | 0,52 | 0,47  | 0,34 |
| mm     | 120  | 180   | 265  |
| ka/m   |      | 17.88 |      |







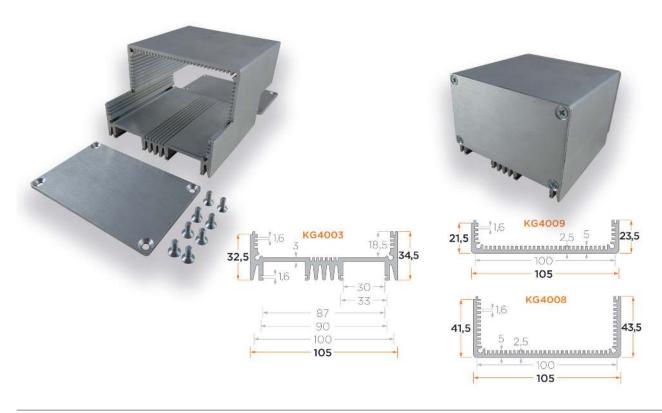

| Pv [W] | R    | V]   |      |
|--------|------|------|------|
| 10     | 1,63 | 1,15 | 0,80 |
| 30     | 1,31 | 0,92 | 0,64 |
| 50     | 1,18 | 0,83 | 0,57 |
| 70     | 1,09 | 0,77 | 0,53 |
| 90     |      | 0,73 | 0,50 |
| mm     | 50   | 100  | 150  |
| kg/m   | 8,86 |      |      |

#### PR 383





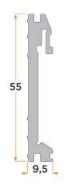
| Pv [W] | R    | thK [K/V | V]   |
|--------|------|----------|------|
| 10     | 1,16 | 0,80     | 0,64 |
| 30     | 0,93 | 0,65     | 0,52 |
| 50     | 0,83 | 0,58     | 0,47 |
| 70     | 0,77 | 0,54     | 0,44 |
| 90     | 0,73 | 0,51     | 0,42 |
| mm     | 100  | 200      | 300  |
| ka/m   |      | 10.15    |      |




Alutronic liefert
Standardprofile, auch nur
als Sägeabschnitt- in
jeder gewünschten Länge
und Oberfläche!



#### Kombinationsgehäuse KG 4003 - KG 4008 - KG4009


- Stabiles Profilgehäuse aus AlMgSi 0,5 F 22 mit integrierten Kühlrippen
- Innenseite mit integrierten Führungsnuten
- mit integrierten Kernlöchern für Gewindebohrungen Ø 3,7 mm
- zur Aufnahme von ungenormten Bauteilen oder Europakarten
- Lieferung als zerlegter Bausatz
- auf Wunsch mit passenden Frontplatten und Montagematerialien
- Sonderabmessungen, Bearbeitungen und Oberflächen auf Anfrage



# **Tragschienenbefestigung SB 35**

Universelle Klammerbefestigung passend für alle 35mm DIN Tragschienen

- Schnelle und einfache Montage von Kühlkörpern und Gehäusen durch Aufschnappen auf die DIN-Tragschiene
- Sicherer Halt durch stabiles Strangpressprofil mit integrierter Drahtformfeder aus rostfreiem Stahl
- Beliebige Längen sowie Befestigungsbohrungen nach Kundenwunsch (Länge Befestigungsklammern bis 41mm)

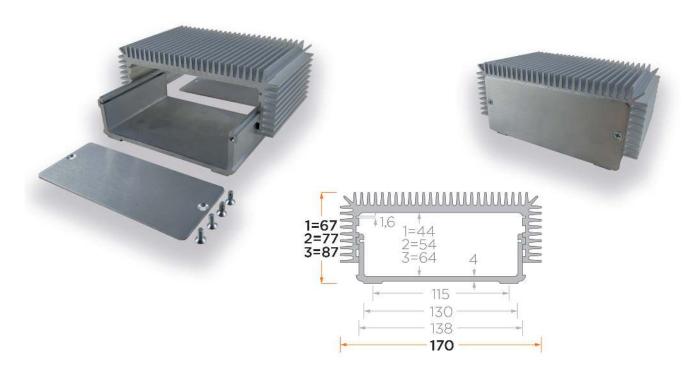




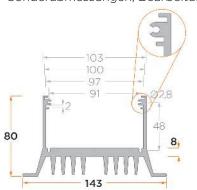


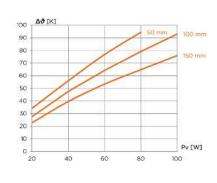


## Wärmeleitgehäuse WG 4291 - WG 4292 - WG 4293


- Stabiles Profilgehäuse aus AlMgSi 0,5 F 22 mit integrierten Kühlrippen
- Seitenwand mit integrierten Führungsnuten
- zur Aufnahme von ungenormten Bauteilen oder Europakarten
- in 3 Höhenvarianten einschiebbar Innen/Aussen

WG 4291 = 44 mm 67 mm


WG 4292 = 54 mm 77 mm


WG 4293 = 64 mm 87 mm

- mit integrierten Kernlöchern für Gewindebohrungen Ø 3,1 mm
- auf Wunsch mit passenden Frontplatten, M4-Gewindebohrungen und Senkkopfschrauben
- Lieferung als zerlegter Bausatz
- Sonderabmessungen, Bearbeitungen und Oberflächen auf Anfrage

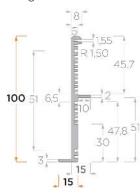


- Gehäuse-Kühlkörper mit integrierten Kühlrippen
- mit seitlichen Stand- oder Befestigungsfüßen
- mit Einschubnuten für Abdeckplatten oder Platinen (z.B. Europakarten)
- integrierte Kernlöcher für Gewindebohrungen zur Befestigung von Frontplatten
- Sonderabmessungen, Bearbeitungen und Oberflächen auf Anfrage



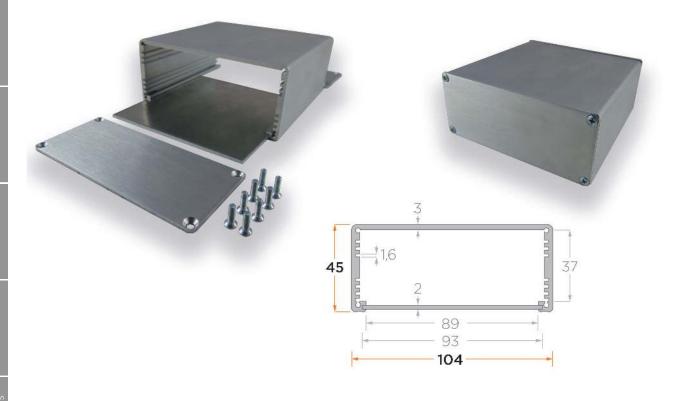


| Pv [W] | R    | thK [K/V | V]   |
|--------|------|----------|------|
| 20     | 1,71 | 1,38     | 1,14 |
| 40     | 1,4  | 1,19     | 0,99 |
| 60     | 1,28 | 1,07     | 0,89 |
| 80     | 1,18 | 0,99     | 0,81 |
| 100    |      | 0,93     | 0,76 |
| mm     | 50   | 100      | 150  |
| g      | 390  | 530      | 790  |


ALUTRONIC

# Universal-Seitenprofil UP 285

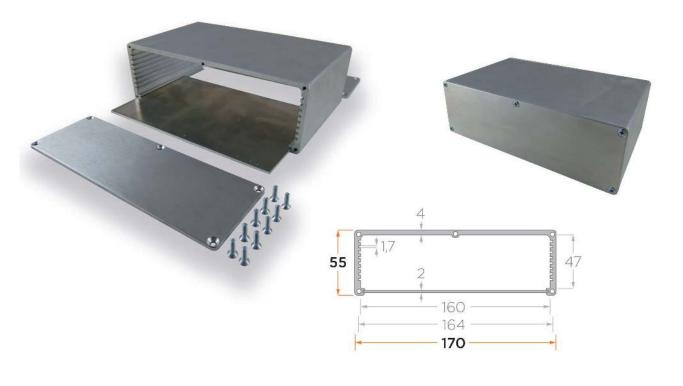
Universal-Seitenprofil aus Aluminium z.B. zur Konstruktion eines Wärmeableitgehäuses mit Kühlprofilen. Insbesondere mit einseitig verrippten Kammprofilen lassen sich so Kühlgehäuse beliebiger Breite und Länge konstruieren

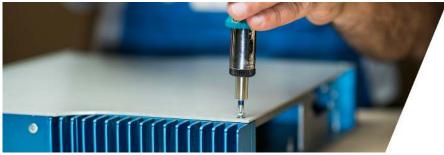

- Einschubnuten für Platinen verschiedener Stärken
- Schraubkanäle für selbstschneidende Schrauben zur Befestigung von Frontplatten
- Besonders für Kleinserien gut geeignet
- Befestigung am Kühlkörper mittels Innensteg (unsichtbar) oder seitlich an beliebiger Stelle des Seitenprofils
- Sonderabmessungen, Bearbeitungen und Oberflächen auf Anfrage





# Schalengehäuse SG 3400


- Stabiles Schalengehäuse aus AlMgSi 0,5 F 22 mit einschiebbarem Boden (oder Deckel)
- Seitenwand mit integrierten Führungsnuten
- zur Aufnahme von ungenormten Bauteilen oder Europakarten
- mit integrierten Kernlöchern für Gewindebohrungen Ø 2,5 mm
- auf Wunsch mit M3-Gewinde für passende Frontplatten und Montagematerialien
- Lieferung als zerlegter Bausatz
- Sonderabmessungen, Bearbeitungen und Oberflächen auf Anfrage






#### Schalengehäuse SG 3500

- Stabiles Schalengehäuse aus AlMgSi 0,5 F 22 mit einschiebbarem Boden (oder Deckel)
- Seitenwand mit integrierten Führungsnuten
- zur Aufnahme von ungenormten Bauteilen oder Europakarten
- keine integrierten Kernlocher im Standardprofil
- auf Wunsch mit M3-Gewinde für passende Frontplatten und Montagematerialien
- Lieferung als zerlegter Bausatz
- Sonderabmessungen, Bearbeitungen und Oberflächen auf Anfrage





Alutronic bietet die Montage von Baugruppen wie zum Beispiel Gehäuse an!





Ihre Entwärmungsprobleme hätten wir gerne! Schnell und einfach zum benötigten Wärmewiderstand ihres Kühlkörpers unter www.alutronic.de/service/rthk-rechner





Determine the thermal resistance requirement to your heat sink solution

We like to have your cooling problems!

www.alutronic.com/service/rthk-calculator

quick and easy- online with our RthK Calculator at

# Inhaltsverzeichnis

| - für Mehrfachmontage                    | 68 |
|------------------------------------------|----|
| Schraubbare Kühlkörper für Einzelmontage | 73 |
| Lötbare Kühlkörper für Einzelmontage     | 78 |
| Steckbare Kühkörper für Einzelmontage    | 88 |
| Klebbare Kühlkörper für Einzelmontage    | 94 |

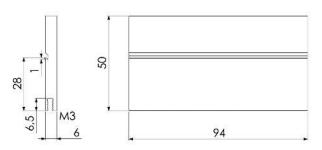


Hier finden Sie Ihre Standardlösung aus über 200 spezifischen Kühlkörpern für alle gängigen Halbleitergehäusetypen, wie z.B. TO 220, TO 3, TO 66, TO 9, SOT 32 und viele weitere.

Unser Angebot ist unterteilt in die verschiedenen Montagearten: Schrauben, Löten, Stecken und Kleben.

Für Sie modifizieren wir Standards oder beschaffen diese nach Ihren technischen Vorstellungen. Wir beraten Sie gern.

Sollten Sie auf der Suche nach Lösungen in diesem Katalog nichts passendes finden, dann rufen Sie uns an.

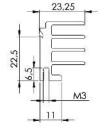

Wir erweitern ständig unser Angebot; aktuelle Daten finden Sie ebenfalls unter www.alutronic.de

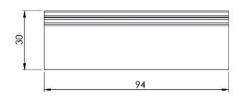


Passende Clips zu unsere Profilen mit Clipnut finden Sie im Kapitel Befestigung / Montage Clipse

# PR 101/94/SE







Für Gehäuse: **TO 220, TO 218 (TOP 3)**Rthk: [K/W]: **7** 

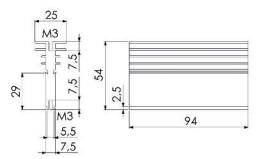
Halbleitermontageart: Clip-Montage

# PR 290/94/SE







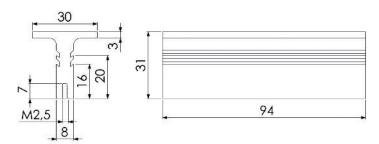

Für Gehäuse: TO 220

Rthk: [K/W]: 6,3

Halbleitermontageart: Clip-Montage

# PR 118/94/SE



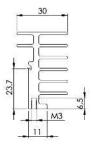


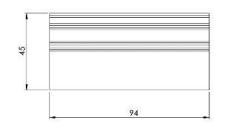

Für Gehäuse: TO 220, TO 218 (TOP 3) Rthk: [K/W]: 3,2

Halbleitermontageart: Clip-Montage

# PR 116/94/SE







Für Gehäuse: TO 220, TO 218 (TOP 3) Rthk: [K/W]: 4,8

Halbleitermontageart: Clip-Montage

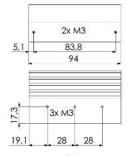
# PR 127/94/SE







Für Gehäuse: TO 220, TO 218 (TOP 3)Rthk: [K/W]: 4


Halbleitermontageart: Clip-Montage

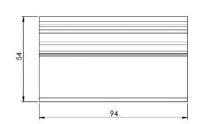
**ALUTRONIC** 

#### PR 136/94/SE/M3









Für Gehäuse: **TO 220, TO 218 (TOP 3)**Rthk: [K/W]: **2,6** 

Halbleitermontageart: Schrauben

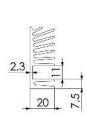
#### PR 119/94/SE



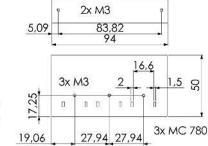




Für Gehäuse: TO 220


Rthk: [K/W]: 3,4

Halbleitermontageart: Clip-Montage

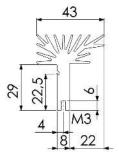

# PR 139/94/SE/M3

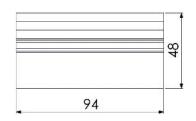


Für Gehäuse: TO 220



Rthk: [K/W]: **3,9** 





Halbleitermontageart: Clip-Montage



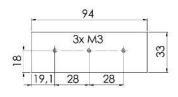
## PR 292/94/SE







Für Gehäuse: TO 220, TO 218 (TOP 3) Rthk: [K/W]: 3,2


Halbleitermontageart: Clip-Montage

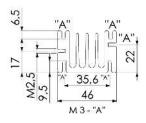
# PR 137/94/SE/M3

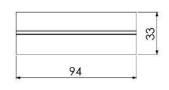
mit integrierter Standardlochung zur Halbleiterbefestigung








Für Gehäuse: **TO 220, TO 218 (TOP 3)**Rthk: [K/W]: **3** 


Halbleitermontageart: Schrauben

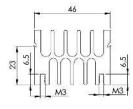
# PR 138/94/SE

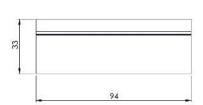
mit integriertem Schraubkanal zur Halbleiterbefestigung








Für Gehäuse: TO 220, TO 218 (TOP 3) Rthk: [K/W]: 3,2


Halbleitermontageart: Schrauben

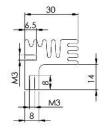
# PR 293/94/SE

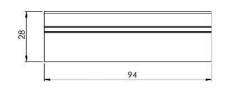
mit integrierter Clipnut zur Halbleiterbefestigung








Für Gehäuse: TO 220


Rthk: [K/W]: 3,2

Halbleitermontageart: Clip-Montage

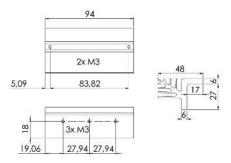
# PR 234/94/SE







Für Gehäuse: **TO 220** 


Rthk: [K/W]: 4,5

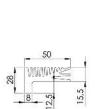
 ${\it Halble itermontage art:} \ {\it Schrauben}$ 

ALUTRONIC

#### PR 143/94/SE/M3






Für Gehäuse: TO 220, TO 218 (TOP 3) Rthk: [K/W]: 3,7

Halbleitermontageart: **Schrauben** 

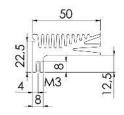
#### PR 133/94/SE/M3

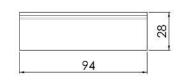
mit integrierter Standardlochung zur Halbleiterbefestigung








Für Gehäuse: **TO 220, TO 218 (TOP 3)**Rthk: [K/W]: **3,6** 


Halbleitermontageart: Schrauben

# PR 233/94/SE

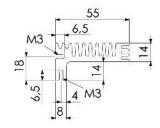
mit integrierter Clipnut zur Halbleiterbefestigung

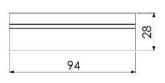






Für Gehäuse: **TO 220, TO 218 (TOP 3)**Rthk: [K/W]: **3,6** 


Halbleitermontageart: Clip-Montage

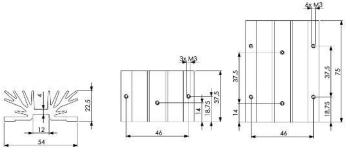



#### PR 126/94/SE

mit integriertem Schraubkanal zur Halbleiterbefestigung





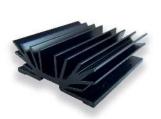


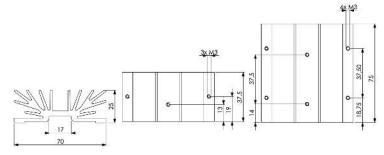

Für Gehäuse: TO 220, TO 218 (TOP 3) Rthk: [K/W]: 3,6

Halbleitermontageart: Schrauben

#### **PR 134 Standardlochung**







Für Gehäuse: **TO220, TO126, (SOT32)** 

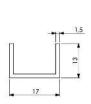
Halbleitermontageart: Schrauben

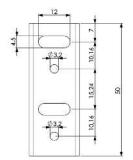
| 1 | Varianten         | Rthk [K/W] | Länge [mm] |
|---|-------------------|------------|------------|
|   | PR 134/37,5/SE/M3 | 5,7        | 37,5       |
| k | PR 134/75/SE/M3   | 3,8        | 75         |

#### **PR 135 Standardlochung**






Für Gehäuse: TO 220, TO 218 (TOP 3)


Halbleitermontageart: Schrauben

|  | Varianten         | Rthk [K/W] | Länge [mm] |
|--|-------------------|------------|------------|
|  | PR 135/37,5/SE/M3 | 4,3        | 37,5       |
|  | PR 135/75/SE/M3   | 2,9        | 75         |

#### PR 17/50/SE

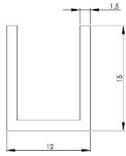




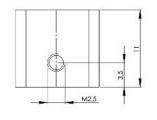


Für Gehäuse: TO 220

Rthk: [K/W]: 21


Halbleitermontageart: **Schrauben** 

#### ALUTRONIC SOLUTIONS FOR COOL RESULTS


#### PR 10/11/SE



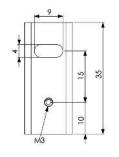
Für Gehäuse: SOT 32, TO 126



Rthk: [K/W]: **45** 



Halbleitermontageart: Schrauben

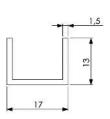

#### PR 15/35/SE



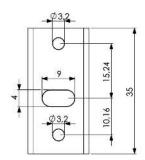
Für Gehäuse: **TO 220** 



Rthk: [K/W]: 9




Halbleitermontageart: Schrauben

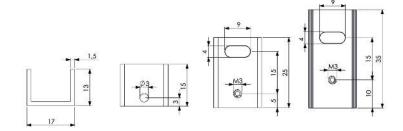

#### PR 17/35/II/SE



Für Gehäuse: TO 220



Rthk: [K/W]: 21




Halbleitermontageart: **Schrauben** 

#### **PR 17 mit Standardlochung**

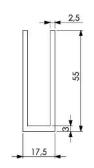


Für Gehäuse: TO 220

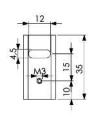


Halbleitermontageart: Schrauben

| Varianten   | Rthk [K/W] | Breite [mm] |
|-------------|------------|-------------|
| PR 17/15/SE | 28         | 15          |
| PR 17/25/SE | 24         | 25          |
| PR 17/35/SE | 21         | 35          |





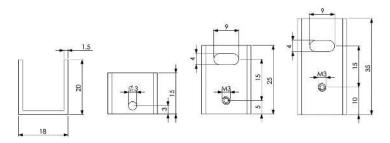


#### PR 16/35/SE



Für Gehäuse: TO 220



Rthk: [K/W]: 7




Halbleitermontageart: Schrauben

#### PR 18 mit Standardlochung

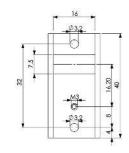


Für Gehäuse: TO 220



Halbleitermontageart: Schrauben

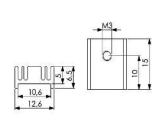
| Tai Ochadse. 10 220 |             | art. Schladben |             |
|---------------------|-------------|----------------|-------------|
|                     | Varianten   | Rthk [K/W]     | Breite [mm] |
|                     | PR 18/15/SE | 20             | 15          |
|                     | PR 18/25/SE | 17             | 25          |
|                     | PR 18/35/SE | 13             | 35          |

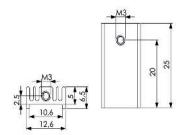

#### PR 13/40/SE



Für Gehäuse: TO 220




Rthk: [K/W]: 11




Halbleitermontageart: Schrauben

### PR 5 mit M3 Gewinde







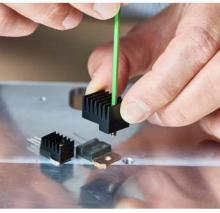
Für Gehäuse: TO 220

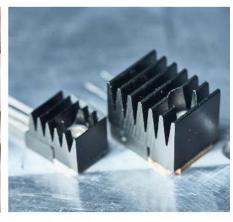
Halbleitermontageart: Schrauben

| Tai Schadse. 19 220 |            |           |
|---------------------|------------|-----------|
| Varianten           | Rthk [K/W] | Höhe [mm] |
| PR 5/15/SE/M3       | 36         | 15        |
| PR 5/25/SE/M3       | 32         | 25        |



### Aufsatz- und Anpresskühlkörper

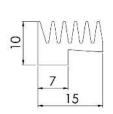

als Andruckoptimierung und zusätzliche Entwärmung

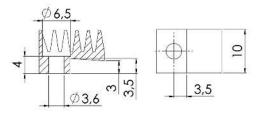

- Reduzierung des Übergangswiderstandes ( $R_{thGK}$ ) zum Hauptkühlkörper und Verbesserung des Wärmeflusses durch ganzflächigen Anpressdruck
- Reduzierung des Gesamtwärmewiderstandes (R<sub>th</sub>) durch zusätzliche Wärmeabfuhr

Standardartikel AK350/10/SE und AK352/15/SE

Sonderabmessungen, z.B. für Mehrfachmontage, auf Anfrage





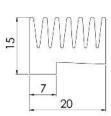

ALUTRONIC

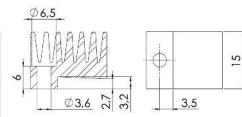
#### **AK 350/10/SE**








Für Gehäuse: TO 220


Rthk: [K/W]: 64

Halbleitermontageart: Schrauben

#### **AK 352/15/SE**



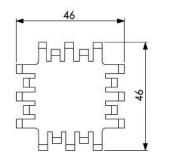


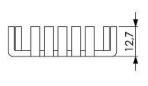


Für Gehäuse: TO 218, TOP 3

Rthk: [K/W]: 28

Halbleitermontageart: Schrauben



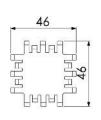

#### FI 310/SE

Für Kundenspezifische Lochung

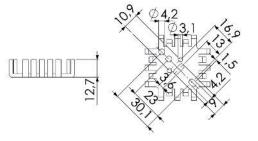







Rthk: [K/W]: 7

Halbleitermontageart: Kleben

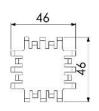

#### FI 311/SE



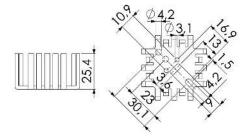
Für Gehäuse: TO3, TO66, TO9, **SOT32, TO220** 



Rthk: [K/W]: 7




Halbleitermontageart: Schrauben

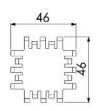

#### FI 321/SE



Für Gehäuse: TO3, TO66, TO9, **SOT32, TO220** 



Rthk: [K/W]: 6



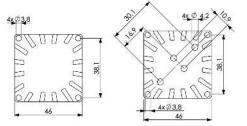

Halbleitermontageart: Schrauben

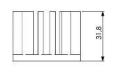
#### FI 322/SE



Für Gehäuse: TO 3




Rthk: [K/W]: 6


Halbleitermontageart: Schrauben

#### FI 340/31,8/SL/TO3

Oberfläche schwarz lackiert. Auch in Pressblank als Artikel FI340/31,8/TO3 lieferbar.







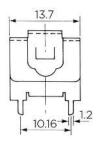
Für Gehäuse: TO 3

Rthk: [K/W]: 4,8

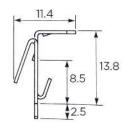
Halbleitermontageart: **Schrauben** 



Nutzen Sie auch den interaktiven RthK-Rechner online!




#### **CK 970**


aus Messing

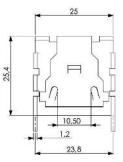


Für Gehäuse: TO 92



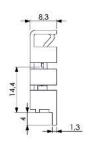
Rthk: [K/W]: 40




Halbleitermontageart: Stecken

#### FI 353/SN

Vollverzinnt



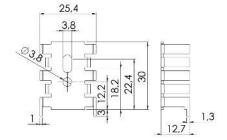

Für Gehäuse: TO 220



Rthk: [K/W]: 20

Rthk: [K/W]: 17




Halbleitermontageart: Stecken

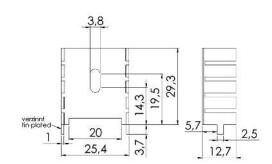
#### FI 351/30/SN

Vollverzinnt



Für Gehäuse: **TO 126, (SOT32), TO 220** 




Halbleitermontageart: Schrauben

#### FI 306/SN

Vollverzinnt



Für Gehäuse: **TO 220** 



Rthk: [K/W]: **22,5** 

Halbleitermontageart: Schrauben



#### FI 347/30/SN

Vollverzinnt



25,4 3,8 3,8 7,79 1,3

Für Gehäuse: T0220, T0126, (S0T32)Rthk: [K/W]: 20

Halbleitermontageart: **Schrauben** 

#### FI 300/SN

Vollverzinnt



9/E 1.6 19,4 22 1.2

Für Gehäuse: TO 220

Rthk: [K/W]: 29,5

Halbleitermontageart: **Schrauben** 

#### FI 307/SN

Vollverzinnt

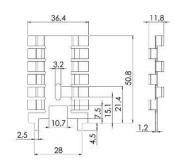


Für Gehäuse: TO 220



Rthk: [K/W]: 15,5




 ${\it Halble itermontage art:} \ {\it Schrauben}$ 

#### FI 308/SN

Vollverzinnt

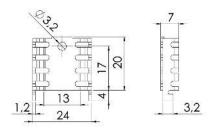


Für Gehäuse: TO 220, TO 202



Rthk: [K/W]: 16,5

Halbleitermontageart: Schrauben




#### FI 302/SN

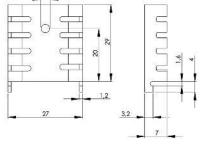
Vollverzinnt



Für Gehäuse: TO 220



Rthk: [K/W]: **23,5** Halbleitermontageart: **Schrauben** 


#### FI 303/SN

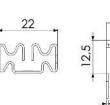
Vollverzinnt

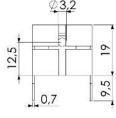


Für Gehäuse: TO 220






Rthk: [K/W]: 22,5 Halbleitermontageart: Schrauben


#### **CK 985/SN**

Vollverzinnt



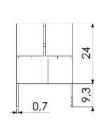
Für Gehäuse: TO 220

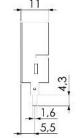




\_\_\_\_\_ 5,3
Halbleitermontageart: **Stecken** 

#### **CK 990/SN**


Vollverzinnt

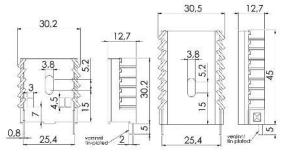



Für Gehäuse: TO 220



Rthk: [K/W]: 20





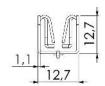

Rthk: [K/W]: 19,5 Halbleitermontageart: **Stecken** 

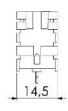


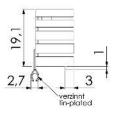
FI 309






Für Gehäuse: TO 220


Halbleitermontageart: Schrauben


| Varianten      | Rthk [K/W] | Höhe [mm] |
|----------------|------------|-----------|
| FI 309/30,2/SE | 17         | 30,2      |
| FI 309/45/SE   | 13         | 45        |

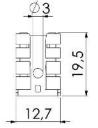
#### FI 343/SE

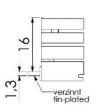









Für Gehäuse: TO 220


Rthk: [K/W]: 25

Halbleitermontageart: Stecken

#### FI 342/SE

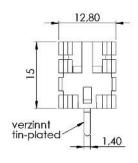




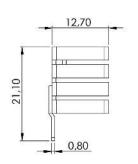




Für Gehäuse: TO 220


Rthk: [K/W]: 25

Halbleitermontageart: **Stecken** 

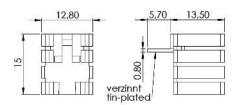

### FI 326/SE

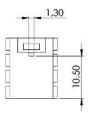






Rthk: [K/W]: 26





Halbleitermontageart: Stecken

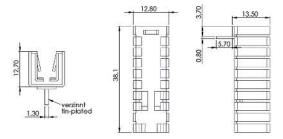
# ALUTRONIC SOLUTIONS FOR COOL RESULTS

#### FI 327/SE








Für Gehäuse: TO 220

Rthk: [K/W]: 26

Halbleitermontageart: **Stecken** 

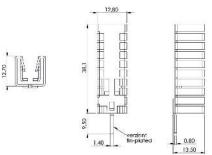
#### FI 330/SE





Für Gehäuse: **TO 220** 

Rthk: [K/W]: 16


Halbleitermontageart: **Stecken** 

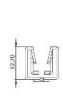
#### FI 331/SE

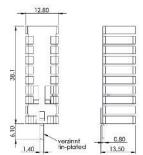
Lötstiftlänge 9,5



Für Gehäuse: TO 220 Rthk: [K/W]: 16




Halbleitermontageart: Stecken


#### FI 329/SE

Lötstiftlänge 6,1

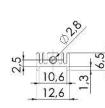


Für Gehäuse: TO 220





Rthk: [K/W]: 16


Halbleitermontageart: Stecken

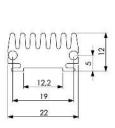


#### PR 5/25/SE/LS



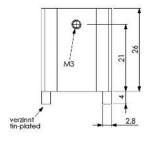
Für Gehäuse: TO 220






Halbleitermontageart: Schrauben

#### PR 6/26/SE/LS

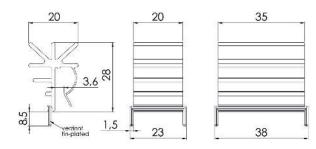



Für Gehäuse: TO 220



Rthk: [K/W]: 14

Rthk: [K/W]: 32



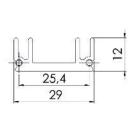

Halbleitermontageart: Schrauben

#### **CK 960**

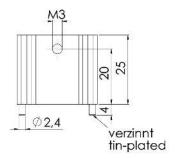


Für Gehäuse: TO 220




Halbleitermontageart: Stecken

| Varianten    | Rthk [K/W] | Breite [mm] |
|--------------|------------|-------------|
| CK 960/20/SE | 13         | 20          |
| CK 960/35/SE | 11         | 35          |


#### PR 29/25/SE/LS

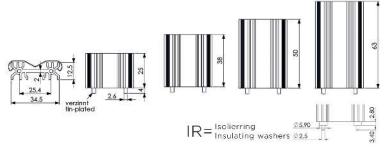


Für Gehäuse: TO 220



Rthk: [K/W]: 14



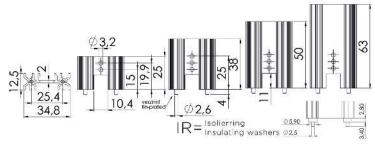

Halbleitermontageart: Schrauben





#### PR 28 für Clipmontage






Für Gehäuse: TO220, TO202, TO218 Halbleitermontageart: Clip-Montage Für Cliptypen: MC 28

| Varianten      | Rthk [K/W] | Höhe [mm] |
|----------------|------------|-----------|
| PR 28/25/MC    | 13         | 25        |
| PR 28/38/MC    | 10         | 38        |
| PR 28/50/MC    | 8,6        | 50        |
| PR 28/63/MC    | 6,8        | 63        |
| PR 28/25/MC/IR | 13         | 25        |
| PR 28/38/MC/IR | 10         | 38        |
| PR 28/50/MC/IR | 8,6        | 50        |
| PR 28/63/MC/IR | 6,8        | 63        |

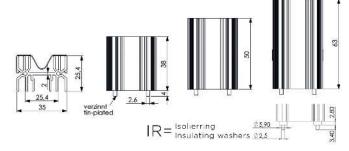
#### PR 28 für Schraubmontage





Für Gehäuse: TO220, TO202, TO218 (TOP 3)

Halbleitermontageart: Schrauben

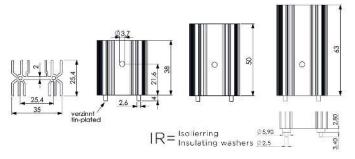

| Varianten      | Rthk [K/W] | Höhe [mm] |
|----------------|------------|-----------|
| PR 28/25/SE    | 13         | 25        |
| PR 28/38/SE    | 10         | 38        |
| PR 28/50/SE    | 8,6        | 50        |
| PR 28/63/SE    | 6,8        | 63        |
| PR 28/25/SE/IR | 13         | 25        |
| PR 28/38/SE/IR | 10         | 38        |
| PR 28/50/SE/IR | 8,6        | 50        |
| PR 28/63/SE/IR | 6,8        | 63        |



Alutronic liefert Silikonfolien individuell und fertig zugeschnitten, preisgünstig bereits ab Losgröße 1!

#### PR 31 für Clipmontage

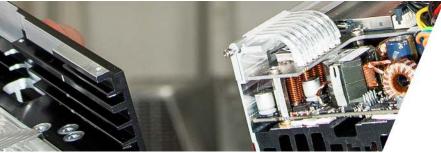





Für Gehäuse: TO220, TO218 (TOP 3) Halbleitermontageart: Clip-Montage Für Cliptypen: MC 31

| Varianten      | Rthk [K/W] | Höhe [mm] |
|----------------|------------|-----------|
| PR 31/38/MC    | 7,2        | 38        |
| PR 31/50/MC    | 5,8        | 50        |
| PR 31/63/MC    | 4,7        | 63        |
| PR 31/38/MC/IR | 7,2        | 38        |
| PR 31/50/MC/IR | 5,8        | 50        |
| PR 31/63/MC/IR | 4,7        | 63        |

#### PR 31 für Schraubmontage

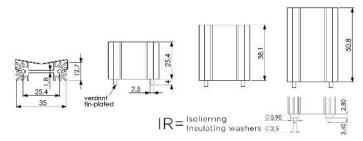





Für Gehäuse: TO 220, TO 218, (TOP 3)

Halbleitermontageart: Schrauben

| ranconductor relations and the second |            |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| Varianten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rthk [K/W] | Höhe [mm] |
| PR 31/38/SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,2        | 38        |
| PR 31/50/SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,8        | 50        |
| PR 31/63/SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,7        | 63        |
| PR 31/38/SE/IR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,2        | 38        |
| PR 31/50/SE/IR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5,8        | 50        |
| PR 31/63/SE/IR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,7        | 63        |

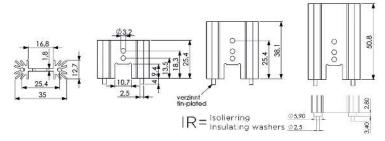



Alutronic montiert
Mechanikelemente wie
Distanzbolzen,
Schrauben,
Einlegmuttern.



#### PR 32 für Clipmontage






Für Gehäuse: TO 220,TO 218,TOP 3, Halbleitermontageart: Clip-Montage Für Cliptypen: MC 32 TO 202

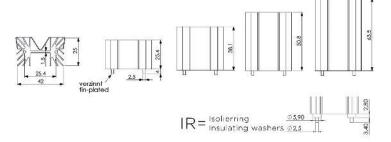
| . • - • -        |            |           |
|------------------|------------|-----------|
| Varianten        | Rthk [K/W] | Höhe [mm] |
| PR 32/25,4/MC    | 14         | 25,4      |
| PR 32/38,1/MC    | 11         | 38,1      |
| PR 32/50,8/MC    | 9          | 50,8      |
| PR 32/25,4/MC/IR | 14         | 25,4      |
| PR 32/38,1/MC/IR | 11         | 38,1      |
| PR 32/50,8/MC/IR | 9          | 50,8      |

#### PR 32 für Schraubmontage





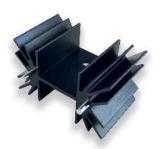

Für Gehäuse: **TO 220, TO202, TO218 (TOP 3)** 

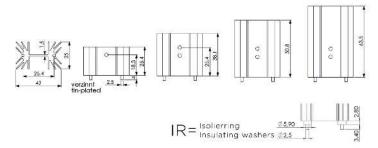

Halbleitermontageart: Schrauben

| Varianten        | Rthk [K/W] | Höhe [mm] |
|------------------|------------|-----------|
| PR 32/25,4/SE    | 14         | 25,4      |
| PR 32/38,1/SE    | 11         | 38,1      |
| PR 32/50,8/SE    | 9          | 50,8      |
| PR 32/25,4/SE/IR | 14         | 25,4      |
| PR 32/38,1/SE/IR | 11         | 38,1      |
| PR 32/50,8/SE/IR | 9          | 50,8      |

## **ALUTRONIC**SOLUTIONS FOR COOL RESULTS

#### PR 33 für Clipmontage




Für Gehäuse: TO220, TO 218 (TOP 3) Halbleitermontageart: Clip-Montage Für Cliptypen: MC 33

| Varianten        | Rthk [K/W] | Höhe [mm] |
|------------------|------------|-----------|
| PR 33/25,4/MC    | 6,2        | 25,4      |
| PR 33/38,1/MC    | 5          | 38,1      |
| PR 33/50,8/MC    | 4,2        | 50,8      |
| PR 33/63,5/MC    | 3,6        | 63,5      |
| PR 33/25,4/MC/IR | 6,2        | 25,4      |
| PR 33/38,1/MC/IR | 5          | 38,1      |
| PR 33/50,8/MC/IR | 4,2        | 50,8      |
| PR 33/63,5/MC/IR | 3,6        | 63,5      |

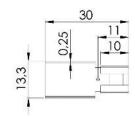
#### PR 33 für Schraubmontage

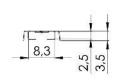




Für Gehäuse: **TO 220, TO 218, (TOP 3)** 

Halbleitermontageart: Schrauben


| Varianten        | Rthk [K/W] | Höhe [mm] |
|------------------|------------|-----------|
| PR 33/25,4/SE    | 6,2        | 25,4      |
| PR 33/38,1/SE    | 5          | 38,1      |
| PR 33/50,8/SE    | 4,2        | 50,8      |
| PR 33/63,5/SE    | 3,6        | 63,5      |
| PR 33/25,4/SE/IR | 6,2        | 25,4      |
| PR 33/38,1/SE/IR | 5          | 38,1      |
| PR 33/50,8/SE/IR | 4,2        | 50,8      |
| PR 33/63,5/SE/IR | 3,6        | 63,5      |



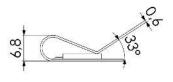

Alutronic bietet speziell für die Clip-Montage von Halbleitern das genial einfache "ClipTool"!

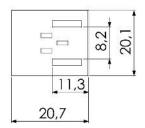
**CK 932/SE** 








Für Gehäuse: T0126, (S0T32), S0T82Rthk: [K/W]: 60


Halbleitermontageart: **Stecken** 

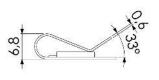
**ALUTRONIC** 

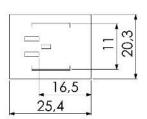
#### CK 632/SE








Für Gehäuse: TO126 (SOT32)


Rthk: [K/W]: 22

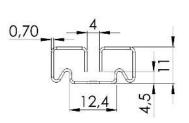
Halbleitermontageart: **Stecken** 

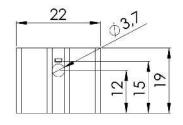
#### CK 633/SE








Für Gehäuse: TO 220


Rthk: [K/W]: 21

Halbleitermontageart: Stecken

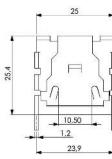
#### **CK 980**





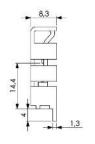


Für Gehäuse: TO 220


Rthk: [K/W]: 21

 ${\it Halble itermontage art:} \ {\it Stecken}$ 

### FI 353/SE



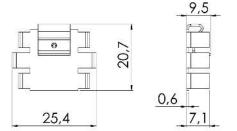

Für Gehäuse: TO 220



Rthk: [K/W]: 18

Rthk: [K/W]: 27

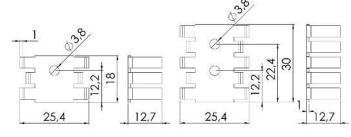



**ALUTRONIC** 

Halbleitermontageart: **Stecken** 

#### FI 344/SE




Für Gehäuse: TO 220



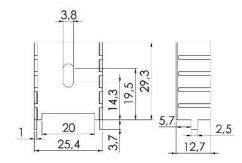
Halbleitermontageart: **Stecken** 

#### FI 349





Für Gehäuse: SOT32 (TO126), TO220


Halbleitermontageart: Schrauben

| 1 41 3614436. 30132 (10120), 10220 | riaibicitermontageart | . ocimaaben |
|------------------------------------|-----------------------|-------------|
| Varianten                          | Rthk [K/W]            | Höhe [mm]   |
| FI 349/18/SE                       | 21                    | 18          |
| FI 349/30/SE                       | 15                    | 30          |

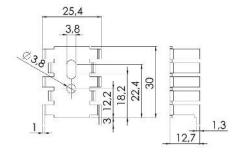
#### FI 306/SE



Für Gehäuse: **TO 220** 



Rthk: [K/W]: 20


Halbleitermontageart: Schrauben

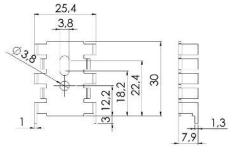
# **ALUTRONIC**

#### FI 351/30/SE



Für Gehäuse: TO 126, (SOT32), TO



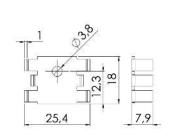

Halbleitermontageart: **Schrauben** 

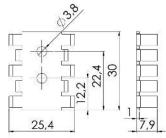
## Rthk: [K/W]: 15

#### FI 347/30/SE



Für Gehäuse: TO 126, (SOT32), TO 220





Rthk: [K/W]: 18

Halbleitermontageart: **Schrauben** 

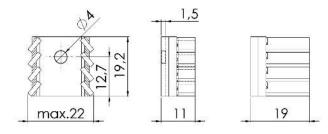
#### FI 345







Für Gehäuse: SOT32 (TO126), TO220


Halbleitermontageart: Schrauben

|  | Varianten    | Rthk [K/W] | Höhe [mm] |  |
|--|--------------|------------|-----------|--|
|  | FI 345/18/SE | 25         | 18        |  |
|  | FI 345/30/SE | 18         | 30        |  |

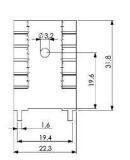


#### FI 355





Für Gehäuse: **TO 220** 


Halbleitermontageart: Schrauben

| Varianten    | Rthk [K/W] | Höhe [mm] |
|--------------|------------|-----------|
| FI 355/11/SE | 30         | 11        |
| FI 355/19/SE | 21         | 19        |

#### FI 300/SE



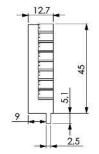
Für Gehäuse: TO 220



Rthk: [K/W]: 27




Halbleitermontageart: Schrauben

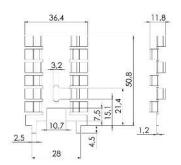

#### FI 307/SE



Für Gehäuse: TO 220



Rthk: [K/W]: 13




Halbleitermontageart: **Schrauben** 

#### FI 308/SE

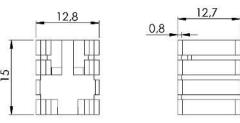


Für Gehäuse: TO 220, TO 202



Rthk: [K/W]: 14

Halbleitermontageart: **Schrauben** 

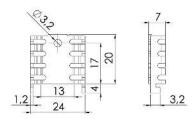

# ALUTRONIC SOLUTIONS FOR COOL RESULTS.

#### FI 328/SE



Für Gehäuse: TO 220

Rthk: [K/W]: **26** 

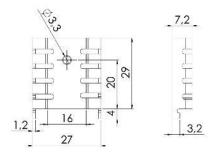



Halbleitermontageart: Stecken

#### FI 302/SE



Für Gehäuse: TO 220 Rthk: [K/W]: 21




Rthk: [K/W]: **21** Halbleitermontageart: **Schrauben** 

#### FI 303/SE



Für Gehäuse: TO 220



Rthk: [K/W]: 20 Halbleitermontageart: Schrauben

#### FE 372

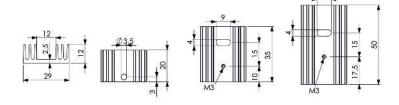




Für Gehäuse: TO5, TO 39

Halbleitermontageart: **Stecken** 

| Varianten    | Rthk [K/W] | Höhe [mm] |
|--------------|------------|-----------|
| FE 372/6/AL  | 63         | 6         |
| FE 372/8/AL  | 54         | 8         |
| FE 372/10/AL | 44         | 10        |


## Steckbare Kühkörper für Einzelmontage



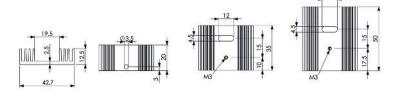
#### **PR 19 mit Standardlochung**

Grundprofil PR 20 finden Sie im Kapitel Profile mit versenkter Montagefläche





Für Gehäuse: TO 220


Halbleitermontageart: Schrauben

| Varianten   | Rthk [K/W] | Länge [mm] |
|-------------|------------|------------|
| PR 19/20/SE | 13,5       | 20         |
| PR 19/35/SE | 12         | 35         |
| PR 19/50/SE | 9,5        | 50         |

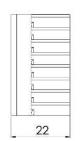
#### **PR 21 mit Standardlochung**

Grundprofil PR 22 finden Sie im Kapitel Profile mit versenkter Montagefläche





Für Gehäuse: TO 220


Halbleitermontageart: Schrauben

| Varianten   | Rthk [K/W] | Länge [mm] |
|-------------|------------|------------|
| PR 21/20/SE | 11         | 20         |
| PR 21/35/SE | 9,5        | 35         |
| PR 21/50/SE | 8          | 50         |

#### FI 356/SE



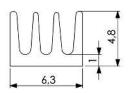


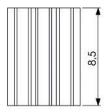


Für Gehäuse: TO 220

Rthk: [K/W]: 9,9

Halbleitermontageart: Schrauben





Die Befestigung folgender Kühlkörper geschieht mittels doppelseitig klebender Wärmeleitfolie z.B. SI 0,13-DS.

Technischen Daten zu Si 0,13-DS finden Sie im Kapitel Befestigung / Isolier- und Wärmeleitfolien.

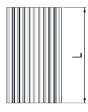
#### PR 7/8,5/SE







Für Gehäuse: DIL 6/8 polig


Rthk: [K/W]: 80

Halbleitermontageart: Kleben

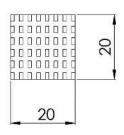
#### PR 8 Standardlängen

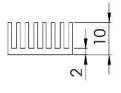






Für Gehäuse: DIL


Halbleitermontageart: Kleben


| r dr Geriadse. | ridibletter riterita; | gear c. The series |
|----------------|-----------------------|--------------------|
| Varianten      | Rthk [K/W]            | Länge [mm]         |
| PR 8/6,3/SE    | 50                    | 6,3                |
| PR 8/33/SE     | 13                    | 33                 |
| PR 8/37/SE     | 11                    | 37                 |
| PR 8/47/SE     | 9,5                   | 47                 |
| PR 8/51/SE     | 8,5                   | 51                 |

#### PG 2020/10/SE/SF

mit bereits vormontierter, doppelseitig klebender Folie

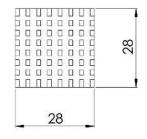


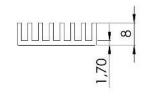




Für Gehäuse: PGA, BGA, IC

Rthk: [K/W]: 18


Halbleitermontageart: Kleben




#### PG 2828/8/SE/SF

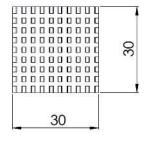
mit bereits vormontierter, doppelseitig klebender Folie

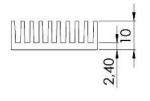






Für Gehäuse: PGA, BGA, IC


Rthk: [K/W]: 11


Halbleitermontageart: Kleben

#### PG 3030/10/SE/SF

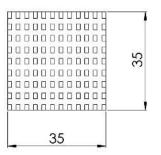
mit bereits vormontierter, doppelseitig klebender Folie

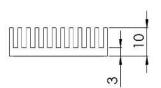






Für Gehäuse: PGA, BGA, IC


Rthk: [K/W]: 9,6


Halbleitermontageart: Kleben

#### PG 3535/10/SE/SF

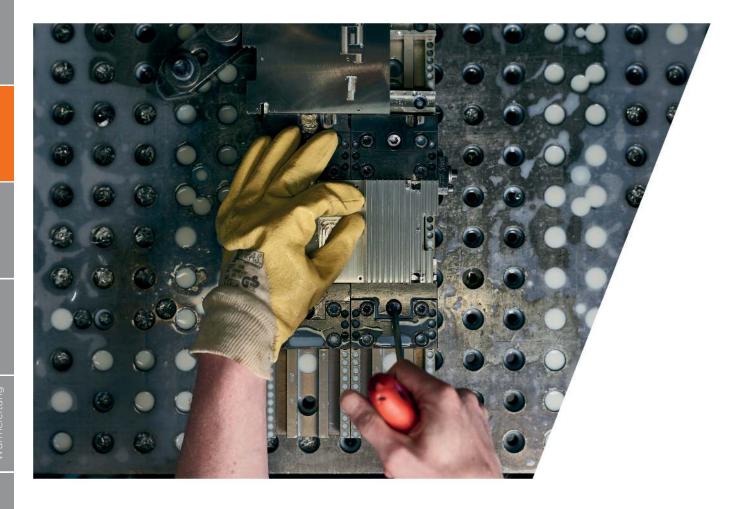
mit bereits vormontierter, doppelseitig klebender Folie





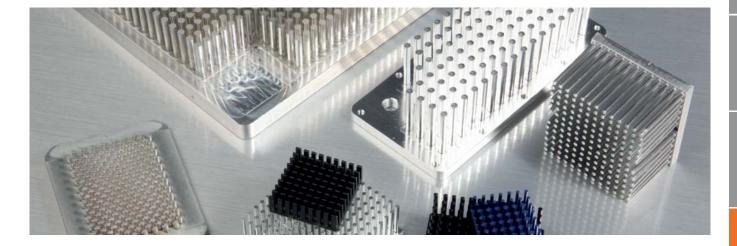


Für Gehäuse: PGA, BGA, IC


Rthk: [K/W]: 7,8

Halbleitermontageart: Kleben




Alutronic sichert die Qualität Ihrer Produkte durch erfahrene Fachkräfte, effiziente Meßtechnik und klar strukturierte Prozesse!





#### Inhaltsverzeichnis

| Stiftkühlkörper Ü | Übersicht | .98   |
|-------------------|-----------|-------|
| 1                 |           |       |
| Stiftkühlkörper - | eckig     | 10C   |
| •                 |           |       |
| Stiftkühlkörper - | rund      | . 11C |



Unsere Stiftkühlkörper werden Stück für Stück kaltfließgepresst - aus hochreinem Aluminium.

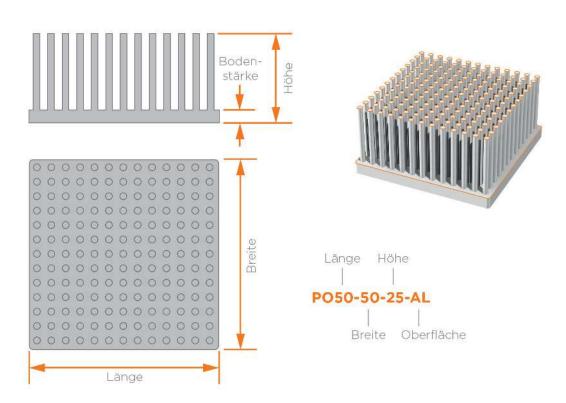
Das garantiert sehr enge Toleranzen und eine ausgezeichnete Wärmeleitfähigkeit. Aus einer großen Variantenvielfalt finden auch Sie Ihre passende Lösung. Ob mit Wärmeleitfolien oder mechanisch bearbeitet (mit Bohrungen / Gewinden): Sie erhalten Ihre montagefertige Lösung schnell, wirtschaftlich und zuverlässig.

Sollten Sie auf der Suche nach Lösungen in diesem Katalog nichts passendes finden, dann rufen Sie uns an.

Wir erweitern ständig unser Angebot; aktuelle Daten finden Sie ebenfalls unter www.alutronic.de



Die angegebenen thermischen Werte wurden bei passiver bzw. aktiver seitlicher Belüftung ermittelt.


Andere thermische Daten wie z.B. für freie Konvektion oder andere Strömungsrichtungen (von oben), fordern Sie bei Bedarf bitte bei uns an.

Neben unseren Standardausführungen sind kundenspezifische Abmessungen (Bodenstärke, Stiftanzahl etc.) sowie mechanische Bearbeitung möglich.

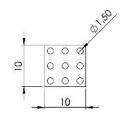
Alle Powerblocs können in den Oberflächen AL = Aluminium Blank, CR = Chromatiert, NE = Naturfarben Eloxiert, SE = Schwarz Eloxiert oder BL = Blau Eloxiert geliefert werden.

Ebenso liefern wir auf Anfrage beidseitig klebende Wärmeleitfolie vormontiert oder zur eigenen Konfektionierung.

So einfach stellen sich die Artikelnamen der Powerblocs zusammen:



## Übersicht Standardausführungen


| Montagefläche | Länge x     | Bodenstärke | Höhe                   | RthK         | Verlust-     | Stift- |
|---------------|-------------|-------------|------------------------|--------------|--------------|--------|
| - eckig       | Breite [mm] | [mm]        | [mm]                   | [K/W]        | leistung [W] | anzahl |
| PO 10-10      | 10x10       | 2           | 6,5 / 12,5             | 112,5 / 84,5 | 0,5          | 9      |
| PO 14-14      | 14×14       | 2           | 6/10                   | 72,5 / 58,3  | 0,75         | 16     |
| PO 17-17      | 17×17       | 3,5         | 15 / 25                | 7,2 / 5,3    | 5            | 25     |
| PO 18-18      | 18x18       | 2           | 6,5 / 12,5             | 6,8 / 4,8    | 8            | 49     |
| PO 25-25      | 25x25       | 2           | 6,5 / 10 / 12,5 / 18,5 | 6,1 - 3,2    | 9            | 49     |
| PO30-30       | 30x30       | 3           | 13 / 33                | 2,5 / 1,6    | 20           | 64     |
| PO 36-36      | 36x36       | 3,5         | 10 / 20                | 2,2 / 1,4    | 25           | 100    |
| PO 40-40      | 40x40       | 3,5         | 10 / 20                | 1,5 / 1,1    | 40           | 121    |
| PO 45-45      | 45x45       | 3,5         | 10 / 20                | 1,9 / 1,1    | 30           | 144    |
| PO 50-50      | 50x50       | 3,5         | 25 / 45                | 0,9 / 0,7    | 65           | 81     |
| 8<br>8<br>8   | 50x50       | 3,5         | 20 / 25                | 0,9/0,8      | 65           | 169    |
| PO 75-50      | 75x50       | 5           | 15 / 35                | 1/0,6        | 55           | 96     |
| PO 98-98      | 98x98       | 5           | 20 / 40                | 0,6/0,3      | 100 / 170    | 256    |
| PO 100-75     | 100x75      | 5           | 15 / 35                | 0,4/0,3      | 80 / 120     | 255    |
| PO 100-100    | 100×100     | 5           | 15 / 35                | 0,6/0,4      | 100          | 340    |
| PO 120-60     | 120x60      | 5           | 25 / 45                | 0,4/0,3      | 120          | 240    |
| PO 130-100    | 130×100     | 5           | 35                     | 0,3          | 190          | 300    |
|               | 130×100     | 5           | 35                     | 0,3          | 200          | 638    |
| PO 200-120    | 200x120     | 10          | 40                     | 0,2          | 400          | 589    |
| 9<br>9<br>8   | 200x120     | 10          | 40                     | 0,1          | 550          | 1215   |
| Montagefläche | Durchmesser | Bodenstärke | Höhe                   | RthK         | Verlust-     | Stift- |
| - rund        | [mm]        | [mm]        | [mm]                   | [K/W]        | leistung [W] | anzahl |
| POR 28,5      | 28,5        | 2           | 6,5 / 18,5             | 48,3 / 26,5  | 1,2          | 44     |
| POR 32,5      | 32,5        | 3           | 10 / 20                | 20,6 / 14,4  | 2,8          | 61     |
| POR 36,5      | 36,5        | 3,5         | 10 / 20                | 18,6 / 13,1  | 3            | 68     |
| POR 40        | 40          | 3           | 10 / 20                | 3,5 / 2,5    | 15           | 91     |
| POR 50        | 50          | 3           | 10 / 20                | 2,2 / 1,5    | 25           | 127    |
|               |             |             |                        |              |              |        |

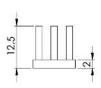
## Rthk: [K/W]: 58,3 Maximale Verlustleistung: [W]: 0,75 Konvektionsart: Passiv

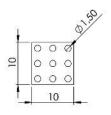
#### PO 10-10-6,5-AL



Maximale Verlustleistung: [W]: 0,5




Konvektionsart: Passiv

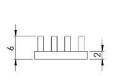

**ALUTRONIC** 

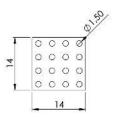
#### PO 10-10-12,5-AL

Rthk: [K/W]: 112,5









Rthk: [K/W]: 84,5 Maximale Verlustleistung: [W]: 0,5

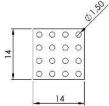
Konvektionsart: Passiv

#### PO 14-14-6-AL





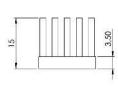


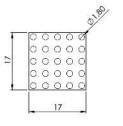

Maximale Verlustleistung: [W]: 0,75 Konvektionsart: Passiv

#### PO 14-14-10-AL

Rthk: [K/W]: 72,5





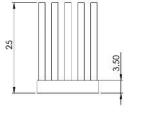

## ALUTRONIC SOLUTIONS FOR COOL RESULTS

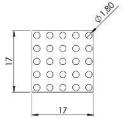
#### PO 17-17-15-AL








Rthk: [K/W]: 7,2


Maximale Verlustleistung: [W]: 5

Konvektionsart: Aktiv (1 m/sec)

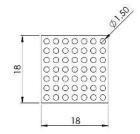
#### PO 17-17-25-AL







Rthk: [K/W]: 5,3


Maximale Verlustleistung: [W]: 5

Konvektionsart: Aktiv (1 m/sec)

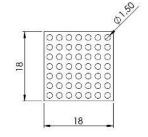
#### PO 18-18-6,5-AL







Rthk: [K/W]: **6,8** 


Maximale Verlustleistung: [W]: 8

Konvektionsart: Aktiv (1 m/sec)

#### PO 18-18-12,5-AL

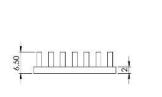




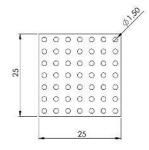


Rthk: [K/W]: 4,8

Maximale Verlustleistung: [W]: 8


Konvektionsart: Aktiv (1 m/sec)




#### PO 25-25-6,5-AL



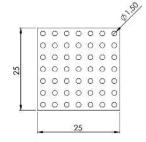
Rthk: [K/W]: 6,1



Maximale Verlustleistung: [W]: 9



Konvektionsart: Aktiv (1 m/sec)

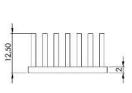

#### PO 25-25-10-AL



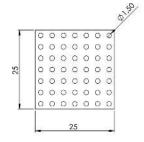
Rthk: [K/W]: 5,4



Maximale Verlustleistung: [W]: 9




Konvektionsart: Aktiv (1 m/sec)

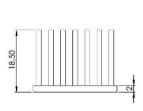

#### PO 25-25-12,5-AL



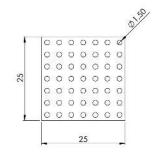
Rthk: [K/W]: 3,9



Maximale Verlustleistung: [W]: 9




Konvektionsart: Aktiv (1 m/sec)


#### PO 25-25-18,5-AL

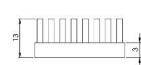


Rthk: [K/W]: 3,2

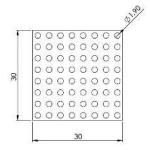


Maximale Verlustleistung: [W]: 9




Konvektionsart: Aktiv (1 m/sec)

## ALUTRONIC SOLUTIONS FOR COOL RESULTS

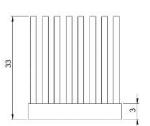

#### PO 30-30-13-AL



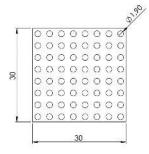
Rthk: [K/W]: 2,5



Maximale Verlustleistung: [W]: 20




Konvektionsart: Aktiv (2 m/sec)

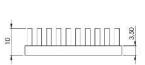

#### PO 30-30-33-AL



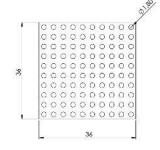
Rthk: [K/W]: 1,6



Maximale Verlustleistung: [W]: 20




Konvektionsart: Aktiv (2 m/sec)

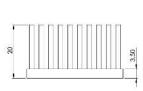

#### PO 36-36-10-AL



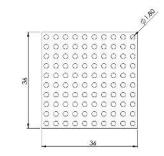
Rthk: [K/W]: 2,2



Maximale Verlustleistung: [W]: 25




Konvektionsart: Aktiv (2 m/sec)


#### PO 36-36-20-AL

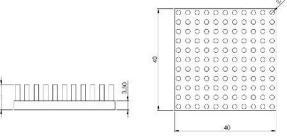


Rthk: [K/W]: 1,4

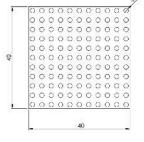


Maximale Verlustleistung: [W]: 25




Konvektionsart: Aktiv (2 m/sec)



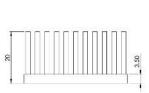

#### PO 40-40-10-AL



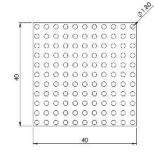
Rthk: [K/W]: 1,5



Maximale Verlustleistung: [W]: 40




Konvektionsart: Aktiv (2 m/sec)


#### PO 40-40-20-AL



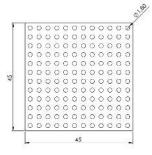
Rthk: [K/W]: 1,1




Maximale Verlustleistung: [W]: 40



Konvektionsart: Aktiv (2 m/sec)

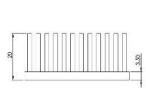

#### PO 45-45-10-AL



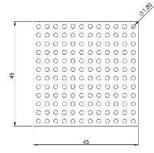
Rthk: [K/W]: 1,9



Maximale Verlustleistung: [W]: 30




Konvektionsart: Aktiv (2 m/sec)


#### PO 45-45-20-AL



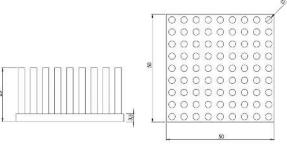
Rthk: [K/W]: 1,1



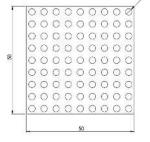
Maximale Verlustleistung: [W]: 30



Konvektionsart: Aktiv (2 m/sec)




#### PO 50-50-25-AL


Ausführung mit 81 Stiften

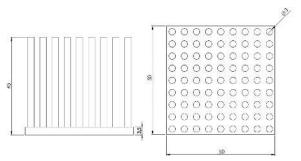


Rthk: [K/W]: 0,87



Maximale Verlustleistung: [W]: 65




Konvektionsart: Aktiv (2 m/sec)

#### PO 50-50-45-AL

Ausführung mit 81 Stiften



Rthk: [K/W]: 0,7



Maximale Verlustleistung: [W]: 65


Konvektionsart: Aktiv (2 m/sec)

#### PO 50-50-20-AL

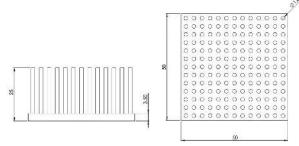
Ausführung mit 169 Stiften



Rthk: [K/W]: 0,87



Maximale Verlustleistung: [W]: 65


Konvektionsart: Aktiv (2 m/sec)

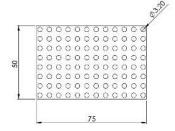
#### PO 50-50-25-AL-1

Ausführung mit 169 Stiften



Rthk: [K/W]: 0,8




Maximale Verlustleistung: [W]: 65

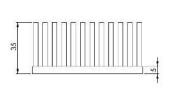
Konvektionsart: Aktiv (2 m/sec)

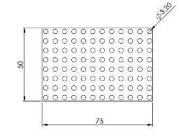


#### PO 75-50-15-AL






Rthk: [K/W]: 1

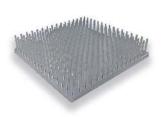

Maximale Verlustleistung: [W]: 55

Konvektionsart: Aktiv (2 m/sec)

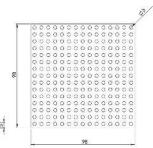
PO 75-50-35-AL








Rthk: [K/W]: 0,6


Maximale Verlustleistung: [W]: 55

Konvektionsart: Aktiv (2 m/sec)

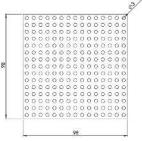
#### PO 98-98-20-AL







Rthk: [K/W]: 0,55

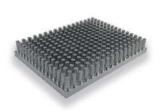

Maximale Verlustleistung: [W]: 100

Konvektionsart: Aktiv (2 m/sec)

#### PO 98-98-40-AL








Rthk: [K/W]: 0,3

Maximale Verlustleistung: [W]: 170

Konvektionsart: Aktiv (2 m/sec)

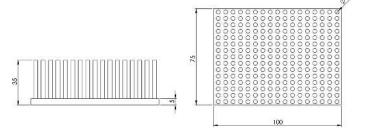
#### PO 100-75-15-AL



Rthk: [K/W]: 0,4



Maximale Verlustleistung: [W]: 80


Konvektionsart: Aktiv (2 m/sec)

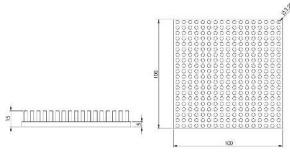
ALUTRONIC

#### PO 100-75-35-AL



Rthk: [K/W]: 0,25




Maximale Verlustleistung: [W]: 120

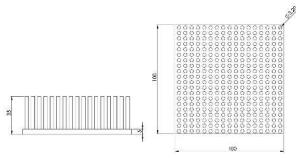
Konvektionsart: Aktiv (2 m/sec)

#### PO 100-100-15-AL



Rthk: [K/W]: 0,57




Maximale Verlustleistung: [W]: 100

Konvektionsart: Aktiv (2 m/sec)

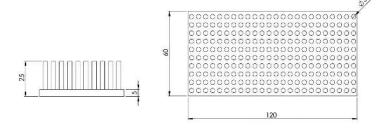
#### PO 100-100-35-AL



Rthk: [K/W]: 0,37



Maximale Verlustleistung: [W]: 100


Konvektionsart: Aktiv (2 m/sec)

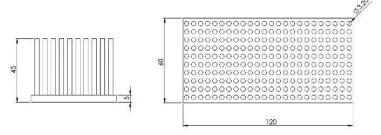


#### PO 120-60-25-AL



Rthk: [K/W]: 0,35



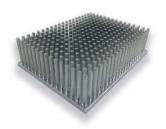

Maximale Verlustleistung: [W]: 120

Konvektionsart: Aktiv (2 m/sec)

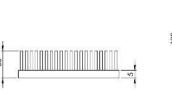
#### PO 120-60-45-AL



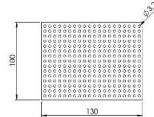
Rthk: [K/W]: 0,3




Maximale Verlustleistung: [W]: 120


Konvektionsart: Aktiv (2 m/sec)

## PO 130-100-35-AL


Ausführung mit 300 Stiften

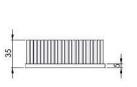


Rthk: [K/W]: 0,3



Maximale Verlustleistung: [W]: 190




Konvektionsart: Aktiv (2 m/sec)

## PO 130-100-35-AL-1


Ausführung mit 638 Stiften



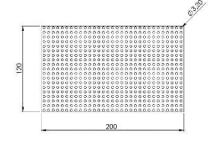
Rthk: [K/W]: 0,3



Maximale Verlustleistung: [W]: 200



Konvektionsart: Aktiv (2 m/sec)



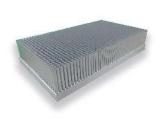

#### PO 200-120-40-AL

Ausführung mit 689 Stiften Leistungswerte bei seitlicher Belüftung

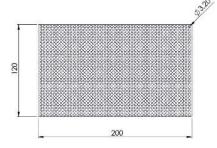







Rthk: [K/W]: 0,15

Maximale Verlustleistung: [W]: 400


Konvektionsart: Aktiv (2 m/sec)

## PO 200-120-40-AL-1

Ausführung mit 1.215 Stiften Leistungswerte bei seitlicher Belüftung



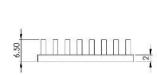
09



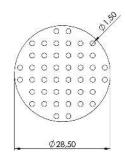
Rthk: [K/W]: 0,12

Maximale Verlustleistung: [W]: 550

Konvektionsart: Aktiv (2 m/sec)




Alutronic unterstützt Ihre Projekte mit thermischen Simulationen.

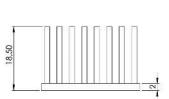

## POR 28,5-6,5-AL



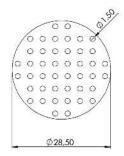
Rthk: [K/W]: 48,3



Maximale Verlustleistung: [W]: 1,2




Konvektionsart: Passiv


## POR 28,5-18,5-AL



Rthk: [K/W]: **26,5** 



Maximale Verlustleistung: [W]: 1,2



Konvektionsart: Passiv

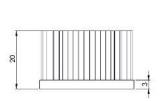
POR 32,5-10-AL



Rthk: [K/W]: 20,6



Maximale Verlustleistung: [W]: 2,8




Konvektionsart: Passiv

## POR 32,5-20-AL

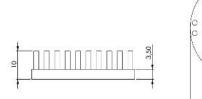


Rthk: [K/W]: 14,4

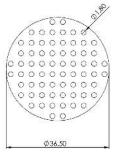


Maximale Verlustleistung: [W]: 2,8




Konvektionsart: Passiv



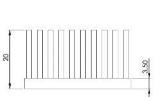

## **POR 36,5-10-AL**



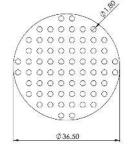
Rthk: [K/W]: 18,6



Maximale Verlustleistung: [W]: 3




Konvektionsart: Passiv

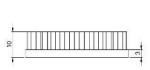

## POR 36,5-20-AL



Rthk: [K/W]: 13,1



Maximale Verlustleistung: [W]: 3




Konvektionsart: Passiv

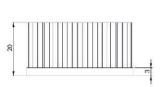

## **POR 40-10-AL**



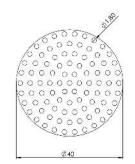
Rthk: [K/W]: **3,5** 



Maximale Verlustleistung: [W]: **15** 




Konvektionsart: Aktiv (2 m/sec)

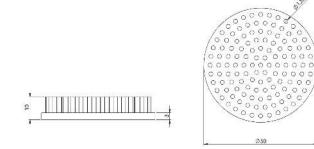

## **POR 40-20-AL**



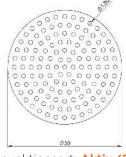
Rthk: [K/W]: 2,5



Maximale Verlustleistung: [W]: 15




Konvektionsart: Aktiv (2 m/sec)

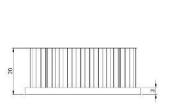

## **POR 50-10-AL**



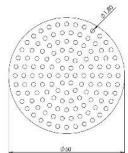
Rthk: [K/W]: 2,2



Maximale Verlustleistung: [W]: 25




Konvektionsart: Aktiv (2 m/sec)


## **POR 50-20-AL**



Rthk: [K/W]: 1,5



Maximale Verlustleistung: [W]: 25



Konvektionsart: Aktiv (2 m/sec)



Alutronic ist seit 2004 zertifiziert nach ISO 9001

## Inhaltsverzeichnis

| Lüfteraggregate aus Stiftkühlkörpern | . 114 |
|--------------------------------------|-------|
| Lüfteraggregate aus Lamellenprofilen | . 117 |

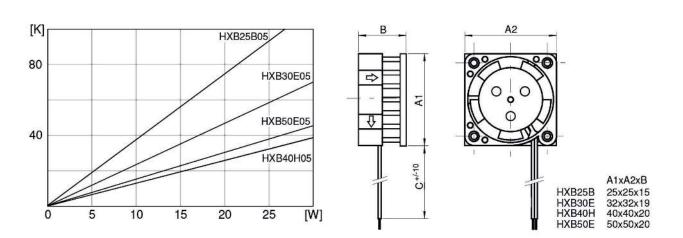


- -Komplette Lösungen für kompakte Anwendungen
- -Individuell anpassbar an Ihre technischen Anforderungen
- -Wirtschaftlich durch standardisierte Einzelkomponenten

Sollten Sie auf der Suche nach Lösungen in diesem Katalog nichts passendes finden, dann rufen Sie uns an.

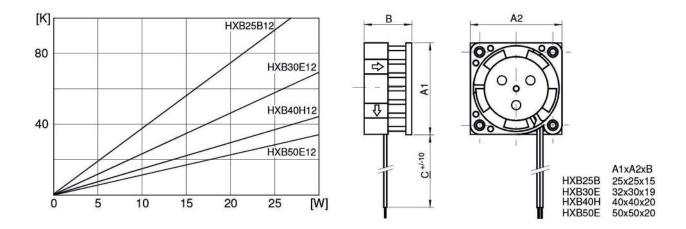
Wir erweitern ständig unser Angebot; aktuelle Daten finden Sie ebenfalls unter www.alutronic.de






## **ALUTRONIC Kühlkörper und SEPA Lüfter**

Aus der Verbindung zwischen ALUTRONIC Kühlkörpern und SEPA Lüftern ist die HXB-Reihe entstanden: eine Kombination, bei der die kugelgelagerten Lüfter Luft von oben ansaugen und zur optimalen Entwärmung über den Kühlkörper verteilen.


Die Kühler der neuesten Generation erreichen bei sehr geringer Leistungsaufnahme einen hohen Volumenstrom. Durch die computergestützte Entwicklung der Flügelgeometrie wurde auch die Geräuschentwicklung optimiert, somit ist das Geräusch bei einer typischen Rotordrehzahl von 11.000 min<sup>-1</sup> mit 21 dB(A) sehr leise (z.B. HXB25B12).

Ein weiterer Pluspunkt ist die lange Lebensdauer von 70.000 / 350.000 h ( $L_{10}$  / MTBF bei 40°C). Außerdem verfügen die Chip-Cooler über einen elektronisch kommutierten Motor, dessen Motorwicklung von einem speziellen IC geschaltet wird. Durch die Auswahl geeigneter elektronischer Komponenten und hochwertiger Kugellager wird die Zuverlässigkeit der Lüfter bei Betriebstemperaturen zwischen -10 und +80 °C erreicht.





| ARTIKELBEZEICHNUNG                               |            | HXB25B05        | HXB30E05 | HXB40H05 | HXB50E05 |
|--------------------------------------------------|------------|-----------------|----------|----------|----------|
| Betriebsspannung                                 | [VDC]      |                 | 4.5      | 5 5.5    |          |
| Typ. Betriebsstrom                               | [mA]       | 40              | 90       | 90       | 50       |
| Max. Startstrom                                  | [mA]       | 120             | 130      | 250      | 120      |
| Typ. Wärmewiderstand                             | [[K/W] ]   | 3,9             | 2,4      | 1,3      | 1,5      |
| Typ. Geräusch (1 m von der<br>Lufteintrittseite) | [dB(A)]    | 20              | 21       | 30       | 19       |
| Typ. Rotordrehzahl                               | [[min -1]] | 10.000          | 8.600    | 5.800    | 3.500    |
| Tachoausgang (A)                                 | [lmp/U]    | 3               | 3        | 2        | 2        |
| Betriebstemperaturbereich                        | [[°C]      | -10 bis +80     |          |          |          |
| Lebensdauererwartung<br>L10/MTBF@40°C            | [h]        | 70.000/350.000  |          |          |          |
| Lagersystem                                      |            | 2 Kugellager ZZ |          |          |          |
| Gewicht                                          | [g]        | 11              | 23       | 37       | 55       |

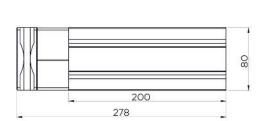


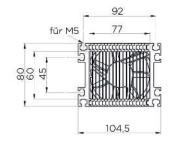


| ARTIKELBEZEICHNUNG                               |          | HXB25B12       | HXB30E12 | HXB40H12 | HXB50E12 |
|--------------------------------------------------|----------|----------------|----------|----------|----------|
| Betriebsspannung                                 | [VDC]    |                | 10.2 1   | 2 13.8   |          |
| Typ. Betriebsstrom                               | [mA]     | 30             | 30       | 60       | 60       |
| Max. Startstrom                                  | [mA]     | 80             | 70       | 90       | 140      |
| Typ. Wärmewiderstand                             | [K/W]    | 42585          | 42492    | 42461    | 42401    |
| Typ. Geräusch (1 m von der<br>Lufteintrittseite) | [dB(A)]  | 21             | 22       | 25       | 25       |
| Typ. Rotordrehzahl                               | [min -1] | 11000          | 9000     | 5500     | 4800     |
| Tachoausgang (A)                                 | [lmp/U]  | 3              | 3        | 2        | 2        |
| Betriebstemperaturbereich                        | [°C]     |                | -10 bi   | s +80    |          |
| Lebensdauererwartung<br>L10/MTBF@40°C            | [h]      | 70.000/350.000 |          |          |          |
| Lagersystem                                      |          |                | 2 Kugel  | lager ZZ |          |
| Gewicht                                          | [g]      | 11             | 23       | 37       | 55       |



Lüfteraggregate mit Axial- und Querstromgebläse, geeignet auch für doppelseitige Bestückung


- Optimierung durch spezielle Lamellenbauweise
- Zur Montage der zu kühlenden Halbleitermodule stehen bei Bedarf zwei gegenüberliegende Montageflächen zur Verfügung.
- Die technischen Daten beziehen sich auf Bestückung einer plangefrästen Montagefläche bei gleichmäßiger Lastverteilung
- Die Druckkammer zwischen Lüfter und Lamellenaggregat gewährleistet eine optimale Luftverteilung auf alle Lamellen.
- Die Sicherheitsbestimmungen nach dem Gesetz über technische Arbeitsmittel sind zu beachten.

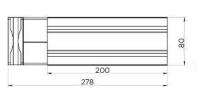

## Allgemeine technische Daten:

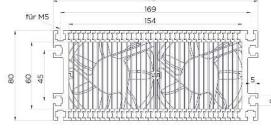
- Zum Korrosionsschutz sind die Aluminiumelemente chromatiert (RoHS-konform)
- Montagefläche plangefräst ( $R_7$  max. 10  $\mu$ m)
- Material AlMgSi 0,5 F22
- Einschubkanäle für M5 Gewindemuttern nach DIN 562

## LK 10/200/A









Max. Verlustleistung: [W]: 200

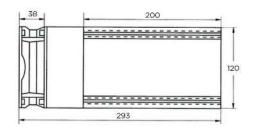
Min. Wärmewiderstand: [K/W]: 0,131

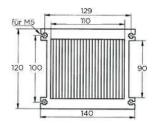
## LK 20/200/A








Max. Verlustleistung: [W]: 400

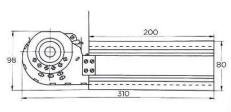

Min. Wärmewiderstand: [K/W]: 0,068

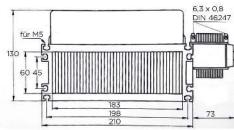
## **ALUTRONIC**

## LK 30/200/A









Max. Verlustleistung: [W]: 400

Min. Wärmewiderstand: [K/W]: 0,073

## LK 40/200/Q







Max. Verlustleistung: [W]: 625

Min. Wärmewiderstand: [K/W]: 0,044



Unser eigenentwickeltes Alutronic-ERP-System bietet aktuelle Transparenz für jeden Prozess!

## **Inhaltsverzeichnis**

| Isolier- und Wärmeleitfolien | 120 |
|------------------------------|-----|
| Glimmerscheiben              | 127 |
| Aluminium-Oxidscheiben       | 129 |
| Isolierkappen und -schläuche | 132 |
| Isolierbuchsen               | 134 |
| Wärmeleitpaste               | 136 |



Aus einem breiten Sortiment an Standardmaterial zur verbesserten Wärmeleitung und Isolierung Ihrer Halbleiter wählen Sie die passende Verbindung zwischen dem wärmeabgebenden und zu wärmeaufnehmenden Bauteil.

Auch bei "Thermal Interface Materials" erhalten Sie ein breites Standardangebot und die Kompetenz, kundenspezifische Anpassungen vorzunehmen. So können z.B. Folien an unserem Schneidplotter professionell zugeschnitten werden, hochwertige Wärmeleitpaste wird an unserer Abfüllanlage in Behältnisse Ihrer Wahl gefüllt, Keramiken werden per Lasertechnik auf Ihre Anwendung zugeschnitten.

Sollten Sie auf der Suche nach Lösungen in diesem Katalog nichts passendes finden, dann rufen Sie uns an.

Wir erweitern ständig unser Angebot; aktuelle Daten finden Sie ebenfalls unter www.alutronic.de

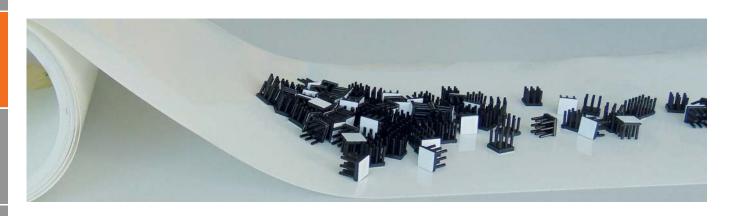




Isolier- und Wärmeleitmaterialien dienen zur isolierten Montage von Bauteilen auf z.B. Kühlkörpern und ermöglichen durch ihr gut wärmeleitendes Material einen verbesserten Wärmeübergang von Bauteil zu Kühlkörper. Das Ausfüllen von Lufteinschlüssen ist optimal durch den Einsatz von Wärmeleitfolien gewährleistet.

Im Vergleich zu Wärmeleitpasten sind Folien einfacher in der Anwendung. Einseitig oder beidseitig klebende Folien helfen bei der Fixierung von Wärmequellen.

Sie können wählen aus verschiedenen Folien in Standardzuschnitten sowie spezifisch geschnittenen Folien mit entsprechenden Maßen/Lochbildern.


Diese können Sie vorkonfektioniert auf Ihre Kühlkörper montiert erhalten.

Die technischen Daten unserer Standardfolien entnehmen Sie bitte den folgenden Seiten.

## Basismaterial SI 0,13-DS (doppelseitig klebend)

Beidseitig haftende Wärmeleitfolie zur Befestigung von Bauteilen an Kühlkörpern Passende Kühlkörper finden Sie im Kapitel

Powerblocs sowie PCB Montage - Klebbare Kühlkörper für Einzelkühlung



Wärmeleitfähigkeit: [W/mK]: 0,8 Zugfestigkeit: [MPa]: 6 Stärke: [mm]: 0,13

Ausdehnung: [45% to Warp and Fill]: Abscherkraft bei Raumtemperatur: 70

Durchschlagsfestigkeit: [KV]: 3.000 Temp. Widerstand: [30 sec C°]: 200 Temperaturbereich: [°C]: -30 bis 120 Entflammbarkeitsklasse: V-O [psi / MPa]: 0,7

Materialverstärkung: Fiberglas Thermische Ausdehnung: [ppm]: 325

## Basismaterial SI 0,18 (nicht klebend) und SI 0,18-S (einseitig selbstklebend)



Wärmeleitfähigkeit: [W/mK]: 0,9 Materialverstärkung: Fiberglas Stärke: [mm]: 0,18 Dielektrizitätskonstante: [at 1 MHz]: 5,5

Durchschlagsfestigkeit: [KV]: 3.500 Bruchfestigkeit: [kN/m]: 5 Temperaturbereich: [°C]: -60 bis 180 Entflammbarkeitsklasse: V-O

Material: Silikon m. Glasfaser Zugfestigkeit: [MPa]: 20 Ausdehnung: [45% to Warp and Fill]: Härte: [ShoreA (Test ASTM D2240)]: 85

## Basismaterial SI 0,23 (nicht klebend) und SI 0,23-S (einseitig selbstklebend)



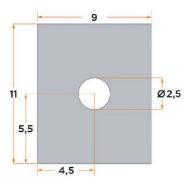
Wärmeleitfähigkeit: [W/mK]: 0,9 Materialverstärkung: Fiberglas Stärke: [mm]: 0,23

Dielektrizitätskonstante: [at 1 MHz]: 5,5

Durchschlagsfestigkeit: [KV]: 4.500 Bruchfestigkeit: [kN/m]: 5 Temperaturbereich: [°C]: -60 bis 180 Entflammbarkeitsklasse: V-O 54

Material: Silikon m. Glasfaser Zugfestigkeit: [MPa]: 20 Ausdehnung: [45% to Warp and Fill]: Härte: [ShoreA (Test ASTM D2240)]: 85




#### Standardzuschnitte

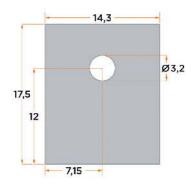
Auf den folgenden Seiten finden Sie unsere Auswahl an Standardformen, gefertigt aus den Materialien SI 0,18 (nicht klebend) / SI 0,18-S (einseitig klebend) SI 0,23 (nicht klebend) / SI 0,23-S (einseitig klebend)

für gängige Halbleiter sowie Tafelmaterial.

Ist Ihre benötigte Form nicht dabei, sind anwendungsspezifische Zeichnungsteile kurzfristig und auch in kleinen Stückzahlen lieferbar.

## **Sortiert nach Halbleiterform**

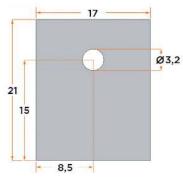



| Variante  | Material            | Stärke     | Wärmeleit-<br>fähigkeit                                                                     | Durchschlags-<br>festigkeit |
|-----------|---------------------|------------|---------------------------------------------------------------------------------------------|-----------------------------|
| SI 7001   | <br> SI0.18         | 0.10       | and Jane Jane Jane and and then then and and their day for the time of the day and the time | 7500 () (4.0)               |
| SI 7001-S | SI0,18-S*<br>SI0,23 | 0,18mm     | 0,9 W/mK                                                                                    | 3500 (VAC)                  |
| SI 7011-S | SI0,23-S*           | 0,23mm     | ni m to to so sil m m m m m m m m m m m m m m m m                                           | 4500 (VAC)                  |
|           | * einseitig sell    | bstklebend |                                                                                             |                             |

Für Gehäuse: TO 220

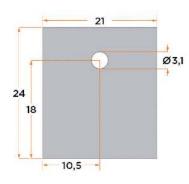
|     | 10  | -    |
|-----|-----|------|
| 12  |     | Ø3,1 |
| 5,5 |     |      |
|     | 5 - |      |

| Variante                          | Material                           | Stärke   | Wärmeleit-<br>fähigkeit | Durchschlags-<br>festigkeit |
|-----------------------------------|------------------------------------|----------|-------------------------|-----------------------------|
| SI 7002<br>SI 7002-S              | <br> SI0,18<br> SI0.18-S*          | 0,18mm   |                         | 3500 (VAC)                  |
| SI 7002-S<br>SI 7012<br>SI 7012-S | SI0,18-5"<br> SI0,23<br> SI0,23-S* | 0,9 W/mK |                         | 4500 (VAC)                  |


Für Gehäuse: TO220

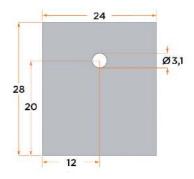


| Variante           | Material             | Stärke | Wärmeleit-<br>fähigkeit | Durchschlags-<br>festigkeit |
|--------------------|----------------------|--------|-------------------------|-----------------------------|
| SI 488             | SI0,18               | 0,18mm |                         | 3500 (VAC)                  |
| SI 488-S           | SI0,18-S*            | 8-5*   | 0,9 W/mK                | 5500 (VAC)                  |
| SI 489<br>SI 489-S | SI0,23<br> SI0,23-S* | 0,23mm |                         | 4500 (VAC)                  |


Für Gehäuse: TO220





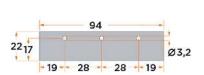

| Variante              | Material            | Stärke | Wärmeleit-<br>fähigkeit | Durchschlags-<br>festigkeit |
|-----------------------|---------------------|--------|-------------------------|-----------------------------|
| SI 7003<br>SI 7003-S  | SIO,18<br>SIO.18-S* | 0,18mm | 0,9 W/mK                | 3500 (VAC)                  |
| SI 7013               | SIO,23<br>SIO,23-S* | 0,23mm | 0,9 00/1116             | 4500 (VAC)                  |
| SI 7013<br> SI 7013-S |                     |        |                         | 4500 (\                     |

Für Gehäuse: TO 220



| Material          | Stärke                     | Wärmeleit-<br>fähigkeit       | Durchschlags-<br>festigkeit                   |
|-------------------|----------------------------|-------------------------------|-----------------------------------------------|
| 10,18<br>10,18-S* | 0,18mm                     | 0.9 W//m/                     | 3500 (VAC)                                    |
| 10,23<br>10,23-S* | 0,23mm                     | 0,9 W/IIIK                    | 4500 (VAC)                                    |
|                   | 0,18-S*<br>0,23<br>0,23-S* | 0,18-S* 0,18mm<br>0,23 0,27mm | 0,18<br>0,18-S*<br>0,23<br>0,23-S*<br>0,23-Mm |

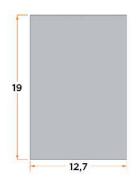
Für Gehäuse: TO 220




| Material            | Stärke                                     | Wärmeleit-<br>fähigkeit                  | Durchschlags-<br>festigkeit |
|---------------------|--------------------------------------------|------------------------------------------|-----------------------------|
| SI0,18<br>SI0,18-S* | 0,18mm                                     | 0.9 W/mK                                 | 3500 (VAC)                  |
| SI0,23<br>SI0,23-S* | 0,23mm                                     | 0,9 00/1116                              | 4500 (VAC)                  |
|                     | SI0,18<br>SI0,18-S*<br>SI0,23<br>SI0,23-S* | SIO,18 O,18mm<br>SIO,18-S* SIO,23 O.27mm | Starke   fähigkeit          |

Für Gehäuse: TO 220

## Für Mehrfachmontage


passende Profilkühlkörper finden Sie im Kapitel Kühlkörper PCB Montage - Mehrfachkühlung



| Material            | Stärke                                     | Wärmeleit-<br>fähigkeit           | Durchschlags-<br>festigkeit |
|---------------------|--------------------------------------------|-----------------------------------|-----------------------------|
| S10,18<br>S10,18-S* | 0,18mm                                     | 0.9 W/mK                          | 3500 (VAC)                  |
| SIO,23<br>SIO,23-S* | 0,23mm                                     | 0,9 00/1116                       | 4500 (VAC)                  |
|                     | SIO,18<br>SIO,18-S*<br>SIO,23<br>SIO,23-S* | SIO,18 0,18mm<br>SIO,18-S* 0,27mm | Starke   fähigkeit          |

Für Gehäuse: **TO 220** 





| Variante           | Material                  | Stärke | Wärmeleit-<br>fähigkeit | Durchschlags<br>festigkeit |
|--------------------|---------------------------|--------|-------------------------|----------------------------|
| SI 487<br>SI 487-S | <br> SI0,18<br> SI0.18-S* | 0,18mm | 0,9 W/mK                | 3500 (VAC)                 |
| SI 498<br>SI 498-S | SIO,23<br>SIO,23-S*       | 0,23mm | 0,9 VV/MK               | 4500 (VAC)                 |

Für Gehäuse: TO 220

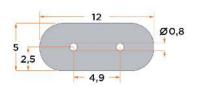
| 18                                           |   |     |     |   |
|----------------------------------------------|---|-----|-----|---|
| <u>.                                    </u> | • | _ 1 | 3 — | - |

| Material                   | Stärke                        | Wärmeleit-<br>fähigkeit    | Durchschlags-<br>festigkeit   |
|----------------------------|-------------------------------|----------------------------|-------------------------------|
| I<br> SI0,18<br> SI0,18-S* | 0,18mm                        | 0.0.1/////                 | 3500 (VAC)                    |
| SIO,23<br>SIO,23-S*        | 0,23mm                        | 0,9 00/1116                | 4500 (VAC)                    |
|                            | SIO,18<br>SIO,18-S*<br>SIO,23 | SIO,18 O,18mm<br>SIO,18-S* | Material   Starke   fähigkeit |

Für Gehäuse: TO 220

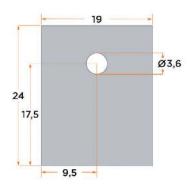
| 20 |      |  |
|----|------|--|
|    |      |  |
|    | 24 - |  |

| Variante             | Material            | Stärke | Wärmeleit-<br>fähigkeit | Durchschlags-<br>festigkeit |
|----------------------|---------------------|--------|-------------------------|-----------------------------|
| SI 7006              | SI0,18              | 0,18mm |                         | 3500 (VAC)                  |
| SI 7006-S<br>SI 7016 | SI0,18-S*<br>SI0,23 |        | 0,9 W/mK                |                             |
| SI 7016-S            | SIO,23-S*           | 0,23mm |                         | 4500 (VAC)                  |


Für Gehäuse: TO 220

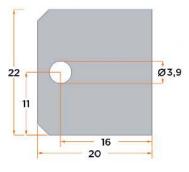
| 11,1<br>7,50 | Ø 3,10 |
|--------------|--------|
|              |        |

| Variante           | Material             | Stärke | Wärmeleit-<br>fähigkeit                                                            | Durchschlags-<br>festigkeit |
|--------------------|----------------------|--------|------------------------------------------------------------------------------------|-----------------------------|
| SI 485<br>SI 485-S | SIO,18<br>SIO.18-S*  | 0,18mm | 0,9 W/mK                                                                           | 3500 (VAC)                  |
| SI 483             | SI0,23<br> SI0,23-S* | 0,23mm | 0,9 00/1116                                                                        | 4500 (VAC)                  |
| SI 483-S           |                      |        | ad and to the core and are and are and are an are are the core are are are are are | 4500 (V                     |


Für Gehäuse: **SOT 32** 






| Variante           | Material            | Stärke | Wärmeleit-<br>fähigkeit | Durchschlags-<br>festigkeit |
|--------------------|---------------------|--------|-------------------------|-----------------------------|
| SI 497<br>SI 497-S | SI0,18<br>SI0.18-S* | 0,18mm | 0,9 W/mK                | 3500 (VAC)                  |
| SI 499<br>SI 499-S | SIO,23<br>SIO,23-S* | 0,23mm | 0,9 W/MK                | 4500 (VAC)                  |

Für Gehäuse: Quartz



| Variante           | Material              | Stärke | Wärmeleit-<br>fähigkeit | Durchschlags-<br>festigkeit |
|--------------------|-----------------------|--------|-------------------------|-----------------------------|
| SI 490<br>SI 490-S | SIO,18<br>  SIO.18-S* | 0,18mm | 0.0 1477 17             | 3500 (VAC)                  |
| SI 495<br>SI 495-S | SIO,23<br>SIO.23-S*   | 0,23mm | 0,9 W/mK                | 4500 (VAC)                  |

Für Gehäuse: TOP 3 (TO 218)



| Variante           | Material                   | Stärke | Wärmeleit-<br>fähigkeit | Durchschlags-<br>festigkeit |
|--------------------|----------------------------|--------|-------------------------|-----------------------------|
| SI 492             | SI0,18                     | 0,18mm |                         | 3500 (VAC)                  |
| SI 492-S<br>SI 493 | SI0,18-S*<br>SI0,23        | 0,23mm | 0,9 W/mK                | 4500 (VAC)                  |
| SI 493-S           | SIO,23-S* * einseitig sell |        |                         | 4500 (VAC)                  |

Für Gehäuse: Multiwatt

|       | Ø 1,6 |
|-------|-------|
| Ø 4,2 |       |
|       | 9     |
| 29    | 10,9  |
|       | 0     |
|       |       |
| *     | 16,9  |
| -     | 30,1  |
| -     | 41,9  |

| Variante                                | Material                  | Stärke     | Wärmeleit-<br>fähigkeit | Durchschlags-<br>festigkeit |
|-----------------------------------------|---------------------------|------------|-------------------------|-----------------------------|
| SI 480<br>SI 480-S                      | <br> SI0,18<br> SI0.18-S* | 0,18mm     | 0,9 W/mK                | 3500 (VAC)                  |
| SI 482<br>SI 482-S                      | SI0,23<br>SI0,23-S*       | 0,23mm     | 0,9 W/mK                | 4500 (VAC)                  |
| ~ = = = = = = = = = = = = = = = = = = = | * einseitig sel           | bstklebend | >                       |                             |

Für Gehäuse: TO 3



## Für Mehrfachmontage

passende Profilkühlkörper finden Sie im Kapitel Kühlkörper PCB Montage - Mehrfachkühlung



| Variante  | 7008   SI0,18<br>  7008-S   SI0,18-S* |           | Wärmeleit-<br>fähigkeit | Durchschlags-<br>festigkeit |  |  |  |  |
|-----------|---------------------------------------|-----------|-------------------------|-----------------------------|--|--|--|--|
| SI 7008   |                                       | 0,18mm    |                         | 3500 (VAC)                  |  |  |  |  |
| SI 7018   | SIO,23                                | 0,23mm    | 0,9 W/mK                | 4500 (VAC)                  |  |  |  |  |
| SI 7018-S | SI0,23-S*                             | 0,2311111 |                         | 4500 (VAC)                  |  |  |  |  |

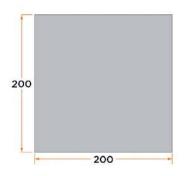
\* einseitig selbstklebend

Für Gehäuse: TO 220

## Für Mehrfachmontage

passende Profilkühlkörper finden Sie im Kapitel Kühlkörper PCB Montage - Mehrfachkühlung




| Variante             | 18 SIO,18 0,18m<br>18-S SIO,18-S* 0,23m<br>23 SIO,23 0,23m | Stärke | Wärmeleit-<br>fähigkeit | Durchschlags-<br>festigkeit |
|----------------------|------------------------------------------------------------|--------|-------------------------|-----------------------------|
| SI 6018<br>SI 6018-S |                                                            | 0,18mm | 0,9 W/mK                | 3500 (VAC)                  |
| SI 6023              | SI0,23                                                     | 0,23mm | 0,9 VV/IIIK             | 4500 (VAC)                  |

\* einseitig selbstklebend

Für Gehäuse: TO 220

## **Plattenmaterial**

für Eigenzuschnitte



| Variante Material   |                                            | Wärmeleit-<br>fähigkeit           | Durchschlags<br>festigkeit |  |  |  |  |
|---------------------|--------------------------------------------|-----------------------------------|----------------------------|--|--|--|--|
| SI0,18<br>SI0,18-S* | 0,18mm                                     | 0.9 W/mK                          | 3500 (VAC)                 |  |  |  |  |
| SI0,23<br>SI0,23-S* | 0,23mm                                     | 0,5 11/11/1                       | 4500 (VAC)                 |  |  |  |  |
|                     | S10,18<br>S10,18-S*<br>S10,23<br>S10,23-S* | SIO,18 0,18mm<br>SIO,18-S* 0,27mm | Starke   fähigkeit         |  |  |  |  |

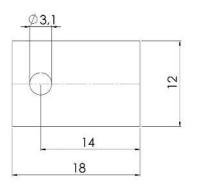


Glimmerscheiben dienen in Verbindung mit Isolierbuchsen der isolierten Montage von Halbleitern z.B. auf Kühlkörpern.

Zur Vermeidung von schlecht wärmeleitenden Lufteinschlüssen empfiehlt sich die Verwendung von Wärmeleitpaste.

Allgemeine technische Werte: Farbe: farblos, klar

picke: 0,05 mm

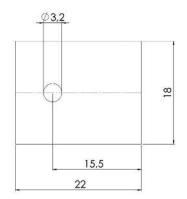

Dickentoleranz: + 0.01/-0.02 mm

Wärmebeständigkeit: + 550 °C Durchschlagsfestigkeit: ca2,5KV

## **GL 530**



Für Gehäuse: TO 220



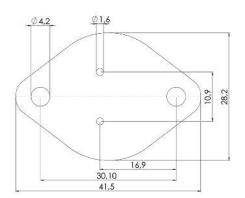

Rth: [K/W]: 1,25

## **GL 535/N**



Für Gehäuse: TOP 3 (TO218)




Rth: [K/W]: 0,8



## **GL 510**



Für Gehäuse: TO 3



Rth: [K/W]: 0,3



Alutronic verwendet ausschließlich CO<sup>2</sup> neutral erzeugten Strom aus Wasserkraftwerken!





Aluminium-Oxid-Scheiben dienen der isolierten Montage von Halbleitern bei hohen Spannungsbereichen. Trotz hoher Durchschlagsfestigkeit ist ein guter Wärmeübergang, z.B. vom Halbleiter zum Kühlkörper gegeben.

Allgemeine technische Werte:Farbe:

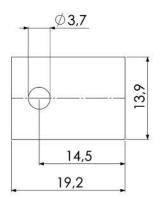
weiß

Durchschlagsfestigkeit:

ca. 10 KV / mm

Dielektrischer Verlustfaktor bei 1 MHz:10<sup>4</sup> Dielektritzitätskonstante bei 1 MHz:

Spezifischer Widerstand:


10<sup>4</sup> Ohm x cm  $3,9 g^3$  Reinheit 96 %

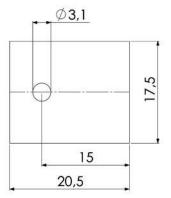
Dichte: R<sub>th</sub> (TO3): ca. 0,5 K/W

Auf den folgenden Seiten finden Sie unsere Standardzuschnitte für gängige Halbleiterformen. Gerne schneiden wir Ihnen nach Zeichnung Ihre individuellen Aluminium-Oxidscheiben zu.

## **AO 475**






Für Gehäuse: TO 220

Wärmeleitfähigkeit: [W/mK]: 25

Stärke: [mm]: 1,6

## **AO 472**





Für Gehäuse: TO 218, TOP 3

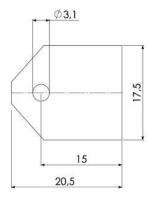
Wärmeleitfähigkeit: [W/mK]: 25

Stärke: [mm]: 1,6



**AO 479** 




Für Gehäuse: TO 220

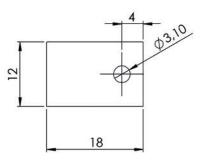
Wärmeleitfähigkeit: [W/mK]: 25

Stärke: [mm]: 1,5

**AO 471** 






Für Gehäuse: TO 218, TOP 3

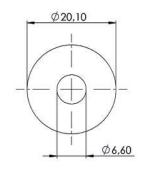
Wärmeleitfähigkeit: [W/mK]: 25

Stärke: [mm]: **1,5** 

## **AO 474**






Für Gehäuse: TO 220

Wärmeleitfähigkeit: [W/mK]: 25

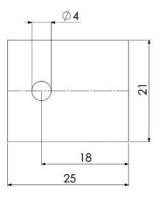
Stärke: [mm]: 1,5

## **AO 478**





Für Gehäuse: DO 5 (Diode)


Wärmeleitfähigkeit: [W/mK]: 25

Stärke: [mm]: 1,6

## AO 480





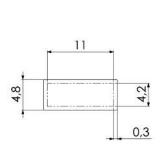


Wärmeleitfähigkeit: [W/mK]: 25

Stärke: [mm]: 3





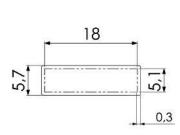

Isolierkappen und Isolierschläuche aus hochwertigem Silikongummi vereinfachen den isolierten Aufbau von Halbleitern z.B. auf Kühlkörpern, insbesondere bei Clipmontage.

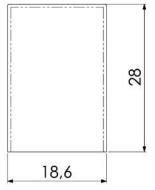
Allgemeine technische Werte:

Farbe: Grau
Durchschlagsfestigkeit: 10 KV
Dielektrizitätskonstante bei 10<sup>4</sup> MHz: 4,4 KV
Temperaturbereich: - 60/+180°C
Härte: 75 Shore A
Dehnung 100 %
R<sub>th</sub>: 1,48 K/W

#### **IK 550**





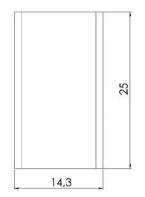

Für Gehäuse: TO 220

## **IK 553**







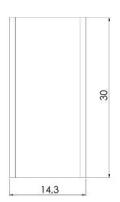

Für Gehäuse: TO 218, TOP 3



## IL 555/25



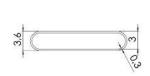


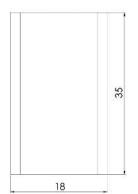



Für Gehäuse: TO 220

## IL 555/30






Für Gehäuse: TO 220

## IL 557/35





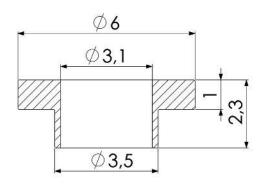


Für Gehäuse: TO 218, TOP 3





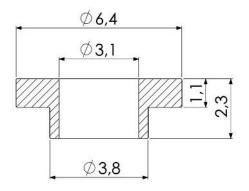



Isolierbuchsen dienen in Verbindung mit Isolierscheiben aus Silikon, Glimmer und Aluminiumoxyd der isolierten Schraubmontage von Halbleitern, z.B. auf Kühlkörpern.

Material: Makrolon (Wärmebeständigkeit 130 C°) (Wärmebeständigkeit 200 C°)

Brennbarkeit gemäß UL 94 VO

## IS 560 + IS 561



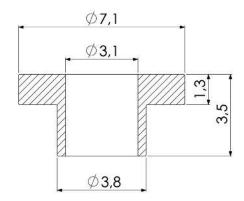



| Varianten | Für Gehäuse                    | Durchschlagsfestigkeit [KV] | Material | Farbe   |
|-----------|--------------------------------|-----------------------------|----------|---------|
| IS 560    | TO220, TO218 (TOP3), Multiwatt | 30                          | Makrolon | Weiß    |
| IS 561    | TO220, TO218 (TOP3), Multiwatt | 16                          | SR25     | Schwarz |

## **IS 565**





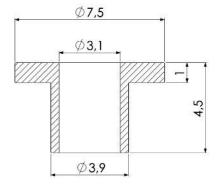

Für Gehäuse: TO220, TO218 (TOP3), Durchschlagsfestigkeit: [KV]: 30 **Multiwatt** 

Material: Makrolon



## **IS 570**





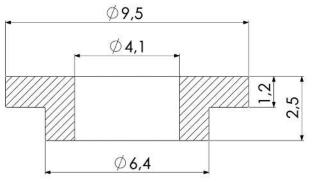

Für Gehäuse: **TO220, TO218 (TOP3),** Durchschlagsfestigkeit: [KV]: **30 Multiwatt** 

Material: Makrolon

## **IS 580**






Für Gehäuse: TO 3

Durchschlagsfestigkeit: [KV]: 30

Material: Makrolon

## **IS 585**





Für Gehäuse: Dioden

Durchschlagsfestigkeit: [KV]: 30

Material: Makrolon



## PA 700 - Silikonhaltig PA 701 - Silikonfrei

Wärmeleitpaste füllt durch z.B. Oberflächenrauhigkeit verursachte, schlecht wärmeleitende Lufteinschlüsse auf und sichert bestmöglichen Wärmeübergang von z.B. Halbleitern auf Kühlkörper.

Für eine Fläche von 100x100 mm (unbearbeitetes Strangpressprofil) wird ca. 0,4g Wärmeleitpaste benötigt, diese sollte als dünner Film aufgetragen werden.

PA701 kommt vor allem zum Einsatz, wenn Systeme absolut frei von Silikon zu halten sind.



#### PA 800 - Silikonfrei

(Arctic Silver)

PA 800 ist eine Hochleistungs-Wärmeleitpaste und ist für alle Anwendungen geeignet.

Durch seine drei einzigartigen Phasen und Größen der Silberpartikel (99,9% Reinst-Silber) wird eine neue Form der Partikel-zu-Partikel Kontaktierung und der Wärmeleitfähigkeit erreicht.

Das polysynthetische Trägermaterial aus Zinkoxid, Aluminiumoxid und Bornitrid verbessert dabei die Leistung und Langzeitstabilität.

Die ideale pastöse Konsistenz der PA800-Wärmeleitpaste sorgt für eine einfache Verarbeitung sowie eine bessere Verteilung auf dem Medium.

Die Paste ist nicht elektrisch leitfähig und frei von Silikonen.



|                           |         | PA 700        | PA 701          | PA 800       |
|---------------------------|---------|---------------|-----------------|--------------|
| Wärmeleitfähigkeit        | [W/mK]  | 0,8           | 0,5             | 9,0          |
| Betriebstemperaturbereich | [°C]    | -40 bis +180  | -40 bis +150    | -50 bis +180 |
|                           |         | Silikonhaltig | Silikonfrei     | Silikonfrei  |
|                           |         | 10g/20g/50g   | 10g / 20g / 50g |              |
| Gebindegrößen             | Spritze | / 100g        | /100g           | 3,5g / 12g   |
|                           | Dose    | 250g / 500g   | 250g / 500g     | ~~~,~~       |

# Leistunger

Sonderprofi

ndardprofile

## **Inhaltsverzeichnis**

| Montage-Clipse                        | 138   |
|---------------------------------------|-------|
| Distanzbolzen - Gewinde Innen / Innen | . 143 |
| Distanzbolzen - Gewinde Innen / Außen | .149  |
| Distanzbolzen - Gewinde Außen / Außen | 157   |
| Distanzrollen                         | . 164 |
| Wärmeleitkleber                       | .165  |

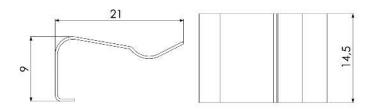


Aus mehr als 300 verschiedenen Standardbefestigungen zur Montage des Kühlkörpers und zur Montage Ihrer Bauteile finden Sie hier wirtschaftliche Lösungen.

Distanzbolzen, Clips und Wärmeleitkleber dienen der Befestigung von Halbleitern auf dem Kühlkörper und bieten Ihnen eine sichere und einfach zu montierende Lösung.

Sollten Sie auf der Suche nach Lösungen in diesem Katalog nichts passendes finden, dann rufen Sie uns an.

Wir erweitern ständig unser Angebot; aktuelle Daten finden Sie ebenfalls unter www.alutronic.de




Alutronic Montage-Clips sind besonders vorteilhaft, wenn Sie in einer beengten Einbausituation elektronische Bauteile an Kühlkörpern befestigen. Ein weiterer wesentlicher Vorteil ist die kürzere Montagezeit im Vergleich zur Schraubmontage und der gleichmäßige, zentrale Anpressdruck vom Halbleiter auf den Kühlkörper. Dieser gewährleistet einen optimalen Wärmeübergang, wodurch sich lokale Temperaturunterschiede im Halbleiter verringern lassen. Fehlmontage durch Überdrehen des Gewindes wird vermieden. Auch ist eine unterschiedliche Kraftverteilung durch den punktuellen Einsatz von Schrauben ausgeschlossen, wodurch Spannungen im Halbleitergehäuse minimiert werden.

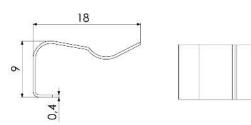
#### MC 797

Passend für alle Alutronic Kühlkörper mit Clipnut.





Für Gehäuse: TO 218, TOP 3


Material: Federstahl

Oberfläche: Brüniert

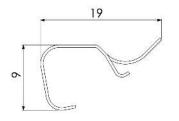
#### MC 725

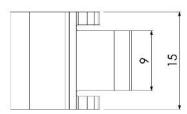
Passend für alle Alutronic Kühlkörper mit Clipnut.





Für Gehäuse: TO 220


Material: Federstahl


Oberfläche: Brüniert

## MC 726

Passend für alle Alutronic Kühlkörper mit Clipnut.

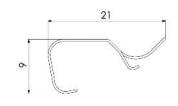


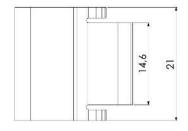




Für Gehäuse: TO 220

Material: Federstahl


Oberfläche: Brüniert




## MC 773

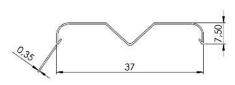
Passend für alle Alutronic Kühlkörper mit Clipnut.







Für Gehäuse: TO 218, TOP 3


Material: Federstahl

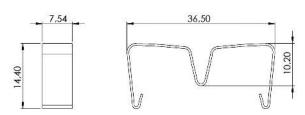
Oberfläche: Brüniert

## MC 28

Montageclip für Kühlprofil PR 31






Material: Federstahl

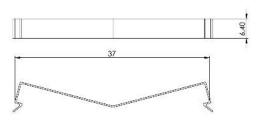
Oberfläche: Brüniert

## MC 31

Montageclip für Kühlprofil PR 31






Material: Federstahl

Oberfläche: Verzinkt

#### MC 32

Montageclip für Kühlkörper PR 32

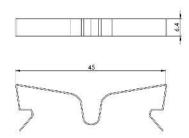




Material: Federstahl

Oberfläche: Brüniert



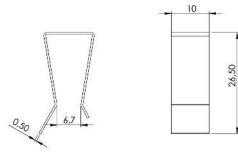



## MC 33

Montageclip für Kühlkörper PR 33



Material: Federstahl

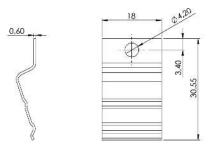



Oberfläche: Brüniert

## MC 740



Material: Federstahl

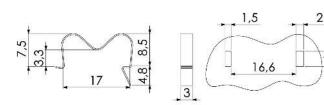



Oberfläche: Verzinkt

## MC 747



Material: rostfreier Stahl




Oberfläche: Blank

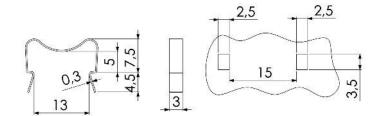
## MC 780



Für Gehäuse: TO 220



Material: rostfreier Stahl

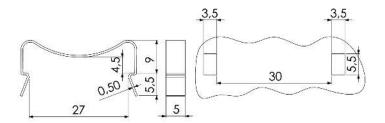

Oberfläche: Blank

ALUTRONIC SOLUTIONS FOR COOL RESULTS

#### MC 782



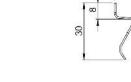
Für Gehäuse: **TO 220** 




Material: rostfreier Stahl Oberfläche: Blank

#### MC 786




Für Gehäuse: TO 218, TOP 3



Material: rostfreier Stahl Oberfläche: Blank

## **MC-U (Universalmontageclip)**





3.5

Für Gehäuse: TO 218, TO 220, TO 247, TO 264, TO 264, SOT 32, SIP Multiwatt

Material: rostfreier Stahl

Oberfläche: Blank

6,5

#### Varianten Cliplänge (L) [mm] Clipanzahl MCU 1 15 MCU 2 MCU 3 50 3 MCU 4 67,5 4 MCU 5 5 85 MCU 6 MCU 7 120 7 MCU 8 MCU 9 MCU 10



## **Clip Tool**

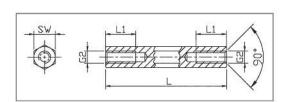
Praktisches Tool für Montageclipse von Alutronic

Das Alutronic Clip Tool ist für alle Alutronic Montage-Clips der Bauart MC725, MC726, MC773 und MC797 geeignet. Gleich einem Schraubendreher, liegt das Werkzeug sicher in der Hand.





## MESSING, METRISCHES GEWINDE


## Distanzbolzen

Тур 6-kant Ausführung innen / innen Messing 2.0401 Material Oberfläche vernickelt (G3E)



#### Gewindelängen [mm]

| L     | L1 bei<br>M2 | L1 bei<br>M2,5 bis M8 |
|-------|--------------|-----------------------|
| 5     | 5            | 5                     |
| 6     | 6            | 6                     |
| 8     | 8            | 8                     |
| 10    | 10           | 10                    |
| 12    | 6            | 12                    |
| 15    | 6            | 15                    |
| 18    | 6            | 9                     |
| ab 20 | 6            | 10                    |



430 N/mm<sup>2</sup> Mindestzugfestigkeit: Toleranz für Längenabmaße: +/- 0,1 mm

#### Längen [mm]

| SW (6-kant) | Gewinde                                                         | 05                                                                                                     | 06                                                                                                  | 08                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80   | 85   | 90                                                                                                                                                                                                      | 95   | 100  |
|-------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| SW 4        | M2                                                              | 05                                                                                                     | 06                                                                                                  | 08                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | Ì    | ĺ                                                                                                                                                                                                       | Ì    | 1    |
| SW 4        | M2,5                                                            | 05                                                                                                     | 06                                                                                                  | 08                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1    |      | 1                                                                                                                                                                                                       |      | 1    |
| SW 5        | M2,5                                                            | 05                                                                                                     | 06                                                                                                  | 08                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -    |      | 1                                                                                                                                                                                                       | -    |      |
| SW 5        | M3                                                              | 05                                                                                                     | 06                                                                                                  | 08                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |                                                                                                                                                                                                         |      |      |
| SW 5,5      | M3                                                              | 05                                                                                                     | 06                                                                                                  | 108                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 1    | -                                                                                                                                                                                                       | -    | 1    |
| SW 6        | M3                                                              | 05                                                                                                     |                                                                                                     | 08                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80   | 85   | 90                                                                                                                                                                                                      | 95   | 100  |
| SW 7        | M4                                                              | 05                                                                                                     | 06                                                                                                  | 08                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80   | 85   | 90                                                                                                                                                                                                      | 95   | 100  |
| SW 8        | M5                                                              |                                                                                                        |                                                                                                     | 08                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80   | 85   | 90                                                                                                                                                                                                      | 95   | 100  |
| SW 10       | M6                                                              |                                                                                                        |                                                                                                     | -                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80   | 85   | 90                                                                                                                                                                                                      | 95   | 100  |
| SW 13       | M8                                                              |                                                                                                        |                                                                                                     |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80   | 85   | 90                                                                                                                                                                                                      | 95   | 100  |
|             | SW 4<br>SW 5<br>SW 5<br>SW 5,5<br>SW 6<br>SW 7<br>SW 8<br>SW 10 | SW 4 M2<br>SW 4 M2.5<br>SW 5 M2.5<br>SW 5 M3<br>SW 5,5 M3<br>SW 6 M3<br>SW 7 M4<br>SW 8 M5<br>SW 10 M6 | SW 4 M2 05 SW 4 M2.5 05 SW 5 M2.5 05 SW 5 M3 05 SW 5,5 M3 05 SW 6 M3 05 SW 7 M4 05 SW 8 M5 SW 10 M6 | SW 4 M2 05 06 SW 4 M2,5 05 06 SW 5 M2,5 05 06 SW 5 M3 05 06 SW 5,5 M3 05 06 SW 6 M3 05 SW 7 M4 05 06 SW 8 M5 SW 10 M6 | SW 4     M2     05     06     08       SW 4     M2,5     05     06     08       SW 5     M2,5     05     06     08       SW 5     M3     05     06     08       SW 5,5     M3     05     06     08       SW 6     M3     05     08     08       SW 7     M4     05     06     08       SW 8     M5     08       SW 10     M6     08 | SW 4     M2     05     06     08     10       SW 4     M2,5     05     06     08     10       SW 5     M2,5     05     06     08     10       SW 5     M3     05     06     08     10       SW 5,5     M3     05     06     08     10       SW 6     M3     05     06     08     10       SW 7     M4     05     06     08     10       SW 8     M5     08     10       SW 10     M6     10 | SW 4     M2     O5   O6   O8   10   12       SW 4     M2,5   O5   O6   O8   10   12       SW 5     M2,5   O5   O6   O8   10   12       SW 5     M3   O5   O6   O8   10   12       SW 5,5   M3   O5   O6   O8   10   12       SW 6   M3   O5   O6   O8   10   12       SW 7   M4   O5   O6   O8   10   12       SW 8   M5   O8   10   12       SW 10   M6   I0   12 | SW 4       M2       05       06       08       10       12       15         SW 4       M2,5       05       06       08       10       12       15         SW 5       M2,5       05       06       08       10       12       15         SW 5       M3       05       06       08       10       12       15         SW 5,5       M3       05       06       08       10       12       15         SW 6       M3       05       06       08       10       12       15         SW 7       M4       05       06       08       10       12       15         SW 8       M5       08       10       12       15         SW 10       M6       08       10       12       15 | SW 4       M2       O5       O6       O8       10       12       15       18         SW 4       M2,5       O5       O6       O8       10       12       15       18         SW 5       M2,5       O5       O6       O8       10       12       15       18         SW 5       M3       O5       O6       O8       10       12       15       18         SW 5,5       M3       O5       O6       O8       10       12       15       18         SW 6       M3       O5       O6       O8       10       12       15       18         SW 7       M4       O5       O6       08       10       12       15       18         SW 8       M5       08       08       10       12       15       18         SW 10       M6       08       10       12       15       18 | SW 4       M2       05       06       08       10       12       15       18       20         SW 4       M2.5       05       06       08       10       12       15       18       20         SW 5       M2.5       05       06       08       10       12       15       18       20         SW 5       M3       05       06       08       10       12       15       18       20         SW 5,5       M3       05       06       08       10       12       15       18       20         SW 6       M3       05       06       08       10       12       15       18       20         SW 7       M4       05       06       08       10       12       15       18       20         SW 8       M5       08       08       10       12       15       18       20         SW 10       M6       08       10       12       15       18       20 | SW 4       M2       05       06       08       10       12       15       18       20       25         SW 4       M2,5       05       06       08       10       12       15       18       20       25         SW 5       M2,5       05       06       08       10       12       15       18       20       25         SW 5       M3       05       06       08       10       12       15       18       20       25         SW 5,5       M3       05       06       08       10       12       15       18       20       25         SW 6       M3       05       06       08       10       12       15       18       20       25         SW 7       M4       05       06       08       10       12       15       18       20       25         SW 8       M5       08       08       10       12       15       18       20       25         SW 10       M6       08       10       12       15       18       20       25 | SW 4       M2       05 06 08 08 10 12 15 18 20 25 30         SW 4       M2.5 05 06 08 10 12 15 18 20 25 30         SW 5       M2.5 05 06 08 10 12 15 18 20 25 30         SW 5       M3 05 06 08 10 12 15 18 20 25 30         SW 5,5 M3 05 06 08 10 12 15 18 20 25 30         SW 6 M3 05 06 08 10 12 15 18 20 25 30         SW 7 M4 05 06 08 10 12 15 18 20 25 30         SW 8 M5 10 M6 10 12 15 18 20 25 30         SW 8 M5 10 12 15 18 20 25 30         SW 10 M6 10 12 15 18 20 25 30 | SW 4       M2       05 06 08 08 10 12 15 18 20 25 30 35         SW 4       M2,5       05 06 08 10 12 15 18 20 25 30 35         SW 5       M2,5       05 06 08 10 12 15 18 20 25 30 35         SW 5       M3       05 06 08 10 12 15 18 20 25 30 35         SW 5,5       M3       05 06 08 10 12 15 18 20 25 30 35         SW 6       M3       05 06 08 10 12 15 18 20 25 30 35         SW 7       M4       05 06 08 10 12 15 18 20 25 30 35         SW 8       M5       08 10 12 15 18 20 25 30 35         SW 10 12 15 18 20 25 30 35 | SW 4       M2       O5   O6   O8   IO   I2   I5   I8   20   25   30   35   40         SW 4       M2,5   O5   O6   O8   IO   I2   I5   I8   20   25   30   35   40         SW 5       M2,5   O5   O6   O8   IO   I2   I5   I8   20   25   30   35   40         SW 5       M3   O5   O6   O8   IO   I2   I5   I8   20   25   30   35   40         SW 5,5   M3   O5   O6   O8   IO   I2   I5   I8   20   25   30   35   40         SW 6   M3   O5   O8   IO   I2   I5   I8   20   25   30   35   40         SW 7   M4   O5   O6   O8   IO   I2   I5   I8   20   25   30   35   40         SW 8   M5   O8   IO   I2   I5   I8   20   25   30   35   40         SW 10   M6   IO   I2   I5   I8   20   25   30   35   40 | SW 4       M2       05 06 08 08 10 12 15 18 20 25 30 35 40 45         SW 4       M2,5 05 06 08 10 12 15 18 20 25 30 35 40 45         SW 5       M2,5 05 06 08 10 12 15 18 20 25 30 35 40 45         SW 5       M3 05 06 08 10 12 15 18 20 25 30 35 40 45         SW 5,5 M3 05 06 08 10 12 15 18 20 25 30 35 40 45         SW 6       M3 05 06 08 10 12 15 18 20 25 30 35 40 45         SW 7       M4 05 06 08 10 12 15 18 20 25 30 35 40 45         SW 8       M5         SW 10 12 15 18 20 25 30 35 40 45         SW 10 12 15 18 20 25 30 35 40 45 | SW 4       M2       05 06 08 08 10 12 15 18 20 25 30 35 40 45 50         SW 4       M2,5 05 06 08 10 12 15 18 20 25 30 35 40 45 50         SW 5       M2,5 05 06 08 10 12 15 18 20 25 30 35 40 45 50         SW 5       M3 05 06 08 10 12 15 18 20 25 30 35 40 45 50         SW 5,5 M3 05 06 08 10 12 15 18 20 25 30 35 40 45 50         SW 6       M3 05 06 08 10 12 15 18 20 25 30 35 40 45 50         SW 7       M4 05 06 08 10 12 15 18 20 25 30 35 40 45 50         SW 8       M5         SW 10 12 15 18 20 25 30 35 40 45 50         SW 10 16 17 18 18 20 25 30 35 40 45 50 | SW 4       M2       05 06 08 10 12 15 18 20 25 30 35 40 45 50         SW 4       M2,5 05 06 08 10 12 15 18 20 25 30 35 40 45 50         SW 5       M2,5 05 06 08 10 12 15 18 20 25 30 35 40 45 50 55         SW 5       M3 05 06 08 10 12 15 18 20 25 30 35 40 45 50 55         SW 5,5 M3 05 06 08 10 12 15 18 20 25 30 35 40 45 50 55         SW 6       M3 05 06 08 10 12 15 18 20 25 30 35 40 45 50 55         SW 7       M4 05 06 08 10 12 15 18 20 25 30 35 40 45 50 55         SW 8       M5       08 10 12 15 18 20 25 30 35 40 45 50 55         SW 8       M5       08 10 12 15 18 20 25 30 35 40 45 50 55         SW 10       M6       10 12 15 18 20 25 30 35 40 45 50 55 | SW 4       M2       05       06       08       10       12       15       18       20       25       30       35       40       45       50       8         SW 4       M2,5       05       06       08       10       12       15       18       20       25       30       35       40       45       50       5       60         SW 5       M2,5       05       06       08       10       12       15       18       20       25       30       35       40       45       50       55       60         SW 5       M3       05       06       08       10       12       15       18       20       25       30       35       40       45       50       55       60         SW 5,5       M3       05       06       08       10       12       15       18       20       25       30       35       40       45       50       55       60         SW 6       M3       05       08       10       12       15       18       20       25       30       35       40       45       50       55       60 </td <td>SW 4       M2       05 06 08 10 12 15 18 20 25 30 35 40 45 50 6         SW 4       M2,5       05 06 08 10 12 15 18 20 25 30 35 40 45 50 6         SW 5       M2,5       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60         SW 5       M3       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60         SW 5,5       M3       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 65         SW 6       M3       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 65         SW 7       M4       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 65         SW 8       M5       08 10 12 15 18 20 25 30 35 40 45 50 55 60 65         SW 10       M6       10 12 15 18 20 25 30 35 40 45 50 55 60 65</td> <td>SW 4       M2       05 06 08 10 12 15 18 20 25 30 35 40 45 50 8       M 45 50 8       M 5 05 06 08 10 12 15 18 20 25 30 35 40 45 50 8       M 5 05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 8         SW 5       M2,5       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 8         SW 5       M3       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 8         SW 5,5       M3       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 65 70         SW 6       M3       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 65 70         SW 7       M4       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 65 70         SW 8       M5       08 10 12 15 18 20 25 30 35 40 45 50 55 60 65 70         SW 10       12 15 18 20 25 30 35 40 45 50 55 60 65 70</td> <td>SW 4</td> <td>SW 4</td> <td>SW 4       M2       05 06 08 10 12 15 18 20 25 30 35 40 45 50 8 8 8 8 8         SW 4       M2,5       05 06 08 10 12 15 18 20 25 30 35 40 45 50 8 8 9 8 10 12 15 18 18 18 18 18 18 18 18 18 18 18 18 18</td> <td>SW 4</td> <td>SW 4</td> | SW 4       M2       05 06 08 10 12 15 18 20 25 30 35 40 45 50 6         SW 4       M2,5       05 06 08 10 12 15 18 20 25 30 35 40 45 50 6         SW 5       M2,5       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60         SW 5       M3       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60         SW 5,5       M3       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 65         SW 6       M3       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 65         SW 7       M4       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 65         SW 8       M5       08 10 12 15 18 20 25 30 35 40 45 50 55 60 65         SW 10       M6       10 12 15 18 20 25 30 35 40 45 50 55 60 65 | SW 4       M2       05 06 08 10 12 15 18 20 25 30 35 40 45 50 8       M 45 50 8       M 5 05 06 08 10 12 15 18 20 25 30 35 40 45 50 8       M 5 05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 8         SW 5       M2,5       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 8         SW 5       M3       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 8         SW 5,5       M3       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 65 70         SW 6       M3       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 65 70         SW 7       M4       05 06 08 10 12 15 18 20 25 30 35 40 45 50 55 60 65 70         SW 8       M5       08 10 12 15 18 20 25 30 35 40 45 50 55 60 65 70         SW 10       12 15 18 20 25 30 35 40 45 50 55 60 65 70 | SW 4 | SW 4 | SW 4       M2       05 06 08 10 12 15 18 20 25 30 35 40 45 50 8 8 8 8 8         SW 4       M2,5       05 06 08 10 12 15 18 20 25 30 35 40 45 50 8 8 9 8 10 12 15 18 18 18 18 18 18 18 18 18 18 18 18 18 | SW 4 | SW 4 |

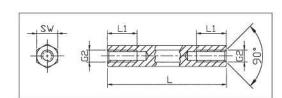
Bestell-Beispiel: DI 656/18



# STAHL, METRISCHES GEWINDE

#### Distanzbolzen

Тур 6-kant Ausführung innen / innen Material Stahl 1.0718 Oberfläche verzinkt (A3F)


(optional auch blank)



| L     | L1 bei<br>M2 | L1 bei<br>M2,5 bis M5 | L1 bei<br>M6 | L1 bei<br>M8 |
|-------|--------------|-----------------------|--------------|--------------|
| 5     | 5            | 5                     | 5            |              |
| 8     | 8            | 8                     | 8            |              |
| 10    | 10           | 10                    | 10           |              |
| 12    | 6            | 12                    | 12           |              |
| 15    | 6            | 15                    | 15           | 15           |
| 18    | 6            | 9                     | 9            |              |
| 20    | 6            | 10                    | 10           | 20           |
| ab 30 | 6            | 10                    | 12           | 14           |

Mindestzugfestigkeit: 500 N/mm<sup>2</sup> Toleranz für Längenabmaße: +/- 0,1 mm (für SW 13 gilt DIN 2768-m)





Längen [mm]

|             |             |         |    | 9-11 | Free |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |            |     |
|-------------|-------------|---------|----|------|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|------------|-----|
| Bestell-Nr. | SW (6-kant) | Gewinde | 05 | 08   | 10   | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95         | 100 |
| DI 619      | SW 4        | M2      | 05 | 08   | 10   | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 |    |    |    |    |    |    | 1  | 1  |    |    |            | 1   |
| DI 602      | SW 4        | M2,5    | 05 | 08   | 10   | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 |    |    |    |    |    |    |    |    |    |    | e i silevi |     |
| DI 613      | SW 5        | M2,5    | 05 | 08   | 10   | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |    |    |    |    |    | 1  |    |    |            |     |
| DI 612      | SW 5        | M3      | 05 | 08   | 10   | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |    |    |    |    |    |    |    |    |            |     |
| DI 642      | SW 5,5      | M3      | 05 | 08   | 10   | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 |    |    |    |    |            | 1   |
| DI 640      | SW 6        | M3      | 05 | 08   | 10   | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95         | 100 |
| DI 668      | SW 7        | M4      | 05 | 80   | 10   | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95         | 100 |
| DI 641      | SW 8        | M4      | 05 | 80   | 10   | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95         | 100 |
| DI 646      | SW 8        | M5      | 1  | 80   | 10   | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95         | 100 |
| DI 657      | SW 10       | M6      |    |      | 10   | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95         | 100 |
| DI 427      | SW 13       | M8      | 1  | 1    |      |    | 15 |    | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95         | 100 |

Bestell-Beispiel: DI 619/12



# EDELSTAHL, METRISCHES GEWINDE

Тур 6-kant Ausführung innen / innen Edelstahl 1.4305 Material



#### Innengewindelängen [mm]

| L     | M2.5+M3 | M4 | M5 | M6 | M8 |
|-------|---------|----|----|----|----|
| 5     | 5       | 5  |    |    |    |
| 8     | 8       | 8  | 8  |    |    |
| 10    | 10      | 10 | 10 | 10 |    |
| 12    | 12      | 12 | 12 | 12 |    |
| 15    | 7       | 15 | 15 | 15 | 15 |
| 18    | 7       | 9  | 9  | 9  | 18 |
| 20    | 7       | 9  | 10 | 10 | 20 |
| 25    | 7       | 9  | 10 | 12 | 12 |
| ab 30 | 7       | 9  | 10 | 12 | 14 |

Mindestzugfestigkeit: 750 N/mm<sup>2</sup> Toleranz für Längenabmaße: +/- 0,1 mm (für SW 13 gilt DIN 2768-m)

#### Längen [mm]

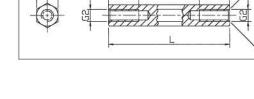
| Bestell-Nr. | SW (6-kant) | Gewinde | 05 | 80 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
|-------------|-------------|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|
| DI 428      | SW 5        | M2,5    | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |    |    |    |    |    |    |    | 1   |
| DI 670      | SW 5,5      | M3      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 |    |    |    |    |    | 1   |
| DI 671      | SW 7        | M4      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 672      | SW 8        | M5      | 1  | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 673      | SW 10       | M6      |    |    | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 429      | SW 13       | M8      |    |    | 3  |    | 15 |    | 20 | 25 | 30 | 35 | 40 | 45 | 50 |    | 60 |    | 70 |    | 80 |    | 90 |    | 100 |

Bestell-Beispiel: DI 672/20



# ALUMINIUM, METRISCHES GEWINDE

Distanzbolzen


Typ 6-kant Ausführung innen / innen Material Aluminium 3,1655



Innengewindelängen [L1 in mm]

| L     | M2.5+M3 | M4 | M5 | М6 | М8 |
|-------|---------|----|----|----|----|
| 5     | 5       | 5  |    |    |    |
| 8     | 8       | 8  | 8  | 1  |    |
| 10    | 10      | 10 | 10 | 10 | -  |
| 12    | 12      | 12 | 12 | 12 |    |
| 15    | 7       | 15 | 15 | 15 | 15 |
| 18    | 7 }     | 9  | 9  | 9  | 18 |
| 20    | 7       | 9  | 10 | 10 | 20 |
| 25    | 7       | 9  | 10 | 12 | 12 |
| ab 30 | 7 :     | 9  | 10 | 12 | 14 |

Mindestzugfestigkeit: 310 N/mm² Toleranz für Längenabmaße: +/- 0,1 mm (für SW 13 gilt DIN 2768-m)



Längen [mm]

| Bestell-Nr. | SW (6-kant) | Gewinde | 05 | 80 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
|-------------|-------------|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|
| DI 500      | SW 5        | M2,5    | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |    | i  | į  |    |    |    |    |     |
| DI 513      | SW 5,5      | M3      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 |    |    |    |    |    |     |
| DI 504      | SW 6        | M3      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 |    |    |    |    |    |     |
| DI 505      | SW 7        | M4      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 511      | SW 8        | M5      |    | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 501      | SW 10       | M6      |    |    | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 512      | SW 13       | M8      |    |    |    |    | 15 |    | 20 | 25 | 30 | 35 | 40 | 45 | 50 |    | 60 |    | 70 | !  | 80 |    | 90 |    | 100 |

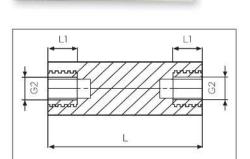
Bestell-Beispiel: DI 500/12



## POLYAMID MIT MESSINGGEWINDE

Distanzbolzen

Typ 6-kant Ausführung innen / innen Material Körper: Polyamid 6.6


Gewinde: Messing vernickelt

UL Klassifizierung V2 Farbe veiß

Durchgangswiderstand: 10<sup>12</sup> Ohm/cm Durchschlagfestigkeit: 50 kV/mm Toleranz für Längenabmaße: +/- 0,1 mm

| Bestell-Nr. | SW (6-kant) | Gewinde | Längen (L) in mm Staffelung |
|-------------|-------------|---------|-----------------------------|
| DI 678      | SW 6        | M2,5    | 15-65                       |
| DI 679      | SW 6        | M3      | 15-65                       |
| DI 680      | SW 8        | M4      | 15-65                       |
| DI 681      | SW 10       | M5      | 15-70                       |

Achtung: Die Auszugs- und Drehmomente können in Abhängigkeit von Einsatzzweck und Umwelteinflüssen (z.B. Temperatur, Luftfeuchtigkeit etc.) schwanken. Bitte bei kritischen Anwendungen Versuche durchführen. Die Firma Alutronic GmbH übernimmt keine Haftung für die Festigkeitswerte.



SW8

SW10 M5

:M4

#### Festigkeitswerte

| Gewinde | längen |
|---------|--------|
| [mm]    |        |

| G1=G2 | L1 |
|-------|----|
| M2,5  | 6  |
| M3    | 6  |
| M4    | 6  |
| M5    | 6  |

| Drehmomente<br>[Nm] | Auszugsmomente<br>[N] |
|---------------------|-----------------------|
| SW6 M2,5 1,3        | SW6 M2,5 30           |
| SW6 M3 1,3          | SW6   M3   30         |

3,0

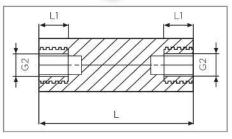
4,5

| SW6  | M2,5 | 300 |
|------|------|-----|
| SW6  | M3   | 300 |
| SW8  | M4   | 600 |
| SW10 | M5   | 800 |

# POLYAMID MIT MESSINGGEWINDE

Distanzbolzen

Typ 6-kant
Ausführung innen / innen
Material Körper: Polyamid 6.6
Gewinde: Messing blank


UL Klassifizierung V2 Farbe natur

Durchgangswiderstand: 10<sup>12</sup> Ohm/cm Durchschlagfestigkeit: 50 kV/mm Toleranz für Längenabmaße: +/- 0,1 mm

| Bestell-Nr. | SW (6-kant) | Gewinde | Längen (L) in mm Staffelung |
|-------------|-------------|---------|-----------------------------|
| DI 581      | SW 13       | M6      | 25-100                      |
| DI 582      | : SW 15     | M8      | 25-100                      |

Achtung: Die Auszugs- und Drehmomente können in Abhängigkeit von Einsatzzweck und Umwelteinflüssen (z.B. Temperatur, Luftfeuchtigkeit etc.) schwanken. Bitte bei kritischen Anwendungen Versuche durchführen. Die Firma Alutronic GmbH übernimmt keine Haftung für die Festigkeitswerte.





#### Festigkeitswerte

| sewindelangen |  |
|---------------|--|
| mm]           |  |
|               |  |

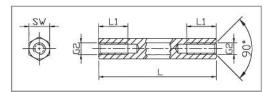
| G1=G2 | L1 |
|-------|----|
| M6    | 11 |
| M8    | 11 |

| Drehm<br>[Nm] | oment | ie.  |
|---------------|-------|------|
| SW13          | M6    | 12,0 |
| SW15          | M8    | 18,0 |

| Auszuç<br>[N] | gsmon | nente |
|---------------|-------|-------|
| SW13          | M6    | 1000  |
| SW15          | ; M8  | 1600  |



# POLYAMID, METRISCHES GEWINDE


Distanzbolzen

Typ Ausführung 6-kant innen / innen Polyamid 6.0 GV Material

UL Klassifizierung HB schwarz Farbe

| Gewinde G2                              | L (mm) | L1 (mm)           |
|-----------------------------------------|--------|-------------------|
|                                         | bis 14 | Durchgangsgewinde |
| M2/M2,5                                 | 15-20  | halbe Länge       |
|                                         | ab 21  | 10                |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | bis 15 | Durchgangsgewinde |
| M3                                      | 16-20  | halbe Länge       |
|                                         | ab 21  | 10                |
| 144 /14F /14G                           | bis 20 | Durchgangsgewinde |
| M4/M5/M6                                | ab 21  | 10                |





Durchgangswiderstand DIN 53 482: >1012 Ohm/cm Durchschlagfestigkeit DIN 54 481: 40 kV/mm Toleranz für Längenabmaße:

| Bestell-Nr. | SW (6-kant) | Gewinde | Standardlängen in mm-Staffelung |
|-------------|-------------|---------|---------------------------------|
| DI 635      | SW 5        | M2      | von 5 mm bis 45 mm              |
| DI 637      | SW 5        | M2,5    | von 4 mm bis 55 mm              |
| DI 636      | SW 6        | M3 :    | von 5 mm bis 65 mm              |
| DI 639      | SW 8        | M4 :    | von 5 mm bis 68 mm              |
| DI 632      | SW 10       | M5 :    | von 5 mm bis 65 mm              |
| DI 633      | SW 10       | M6 :    | von 4 mm bis 65 mm              |

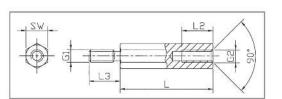
Bestell-Beispiel: DI 635/11



# MESSING, METRISCHES GEWINDE

### Distanzbolzen

**Typ** 6-kant


Ausführung innen/außen

mit Freistich

Material Messing 2.0401 Oberfläche vernickelt (G3E)



(Abbildung in Messing blank, optional bl.)



#### Innengewindelängen [mm]

| L     | L2 bei<br>M2 | L2 bei<br>M2,5 bis M5 | L2 bei<br>M6 |
|-------|--------------|-----------------------|--------------|
| 5     | 3            | 3                     |              |
| 6     | 4            | 4                     |              |
| 8     | 5            | 5                     |              |
| 10    | 6            | 6                     | 6            |
| 12    | 6            | 7                     | 7            |
| 15    | 6            | 10                    | 10           |
| 18    | 6            | 10                    | 10           |
| ab 20 | 6            | 10                    | 12           |

Außengewindelängen [mm]

| G1=G2 | L3  |
|-------|-----|
| M2    | 5   |
| M2,5  | 6   |
| M3    | 6+8 |
| M4    | 8   |
| M5    | 8   |
| M6    | 10  |

Mindestzugfestigkeit: 430 N/mm² Toleranz für Längenabmaße: +/- 0,1 mm

#### Längen [mm]

| Bestell-Nr. | SW (6-kant) | Gewinde | 05 | 06 | 08 | 10 | 12  | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
|-------------|-------------|---------|----|----|----|----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|
| DI 658      | SW 4        | M2      | 05 | 06 | 08 | 10 | 12  | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |    |    |    |    |    |    |    |    |    |     |
| DI 667      | SW 4        | M2,5    | 05 | 06 | 08 | 10 | 12  | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |    |    |    |    |    |    |    |    |    |     |
| DI 649      | SW 5        | M2,5    | 05 | 06 | 08 | 10 | 12  | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |    |    |    |    |    |    | 1  |     |
| DI 653      | SW 5        | M3      | 05 | 06 | 08 | 10 | 12  | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |    |    | 1  |    | 1  |    |    | 1   |
| DI 655      | SW 5,5      | M3      | 05 | 06 | 08 | 10 | 12  | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 |    |    |    |    |    |     |
| DI 430      | SW 6        | M3      | 05 | 06 | 08 | 10 | 12  | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 654      | SW 7        | M4      | 05 | 06 | 08 | 10 | 12  | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 665      | SW 8        | M5      |    |    | 08 | 10 | 12  | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 431      | SW 10       | M6      |    |    |    | 10 | 12  | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 992      | SW 13       | M8      | -  |    | 1  |    | 000 | 15 |    | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |

Bestell-Beispiel: DI 658/10



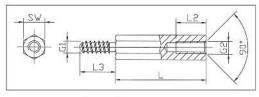
# MESSING MIT SELBSTSCHNEIDENDEM GEWINDE

6-kant Тур Ausführung innen / außen

mit Freistich

Material

Messing 2.0401 Oberfläche vernickelt (G3E)


Außengewinde G1 [mm]

| Gewindegröße | 13 | d1  | d2  |
|--------------|----|-----|-----|
| ST2,2        | 5  | 2,1 | 1,6 |
| ST2,9        | 6  | 2,8 | 2,1 |
| ST3,3        | 6  | 3,2 | 2,3 |
| ST3,5        | 7  | 3,4 | 2,6 |
| ST4,2        | 8  | 4,1 | 3,0 |
| ST4,8        | 8  | 4,7 | 3,5 |
| ST6,3        | 10 | 6,1 | 4,8 |



Innengewinde G2 [mm]

| L (mm) | 12 (mm) |
|--------|---------|
| 8      | 5       |
| 10     | 6       |
| 12     | 7       |
| 15     | 10      |
| 20     | 10      |



Ausführung DIA /innen /außen

Toleranz für Längenabmaße: +/- 0,1 mm

Standardlängen [mm]

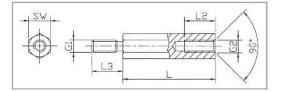
| Bestell-Nr. | SW (mm) | Gewindegröße G1 | Gewindegröße G2 | 08 | 10 | 12 | 15 | 20 |
|-------------|---------|-----------------|-----------------|----|----|----|----|----|
| DI 520      | 5       | ST2,2           | M2,5            | 08 | 10 | 12 | 15 | 20 |
| DI 531      | 5,5     | ST2,9           | M3 :            | 08 | 10 | 12 | 15 | 20 |
| DI 521      | 5,5     | ST3,3           | M3              | 08 | 10 | 12 | 15 | 20 |
| DI 538      | 6       | ST3,5           | . M3            | 08 | 10 | 12 | 15 | 20 |
| DI 539      | 7       | ST4,2           | M4              | 08 | 10 | 12 | 15 | 20 |
| DI 532      | 8       | ST4,8           | M5              | 08 | 10 | 12 | 15 | 20 |
| DI 533      | 10      | ST6,3           | M6 :            |    | 10 | 12 | 15 | 20 |

Bestell-Beispiel: DI 520/15



# STAHL, METRISCHES GEWINDE

Distanzbolzen


Typ 6-kant

Ausführung innen / außen

mit Freistich

Material Stahl 1.0718 Oberfläche verzinkt (A3F)





Innengewindelängen [mm]

Außengewindelängen [mm]

| L     | L2 bei<br>M2 | L2 bei<br>M2,5 bis M5 | L2 bei<br>M6 | L2 bei<br>M8 | G1=G2 | L3 |
|-------|--------------|-----------------------|--------------|--------------|-------|----|
| 5     | 3            | 3                     | i            |              | M2 :  | 5  |
| 8     | 5            | 5                     |              | 100000       | M2,5  | 6  |
| 10    | 6            | 6                     | 6            |              | M3    | 6  |
| 12    | 6            | 7                     | 7            |              | M4    | 8  |
| 15    | 6            | 10                    | 10           | 10           | M5    | 8  |
| 18    | 6            | 10                    | 10           | 1            | M6 ;  | 10 |
| ab 20 | 6            | 10                    | 12           | 14           | M8 ¦  | 14 |

Mindestzugfestigkeit: 500 N/mm² Toleranz für Längenabmaße: +/- 0,1 mm

(für SW 13 gilt DIN 2768-m)

Längen [mm]

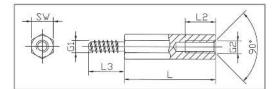
| Bestell-Nr. | SW (6-kant) | Gewinde | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100    |
|-------------|-------------|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|--------|
| DI 432      | SW 4        | M2      | 05 | 80 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 |    | i  | 1  |    |    |    |    | i  |    |    |    | i<br>i |
| DI 433      | SW 4        | M2,5    | 05 | 80 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 1  | 1  |    |    |    |    |    |    |    |    |    |        |
| DI 434      | SW 5        | M2,5    | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |    |    |    |    |    |    |    |    |    |        |
| DI 701      | SW 5        | M3      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |    |    |    |    |    |    |    |    |    |        |
| DI 645      | SW 5,5      | M3      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 |    |    |    |    |    |        |
| DI 643      | SW 6        | M3      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100    |
| DI 669      | SW 7        | M4      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100    |
| DI 644      | SW 8        | M4      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100    |
| DI 647      | SW 8        | M5      |    | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100    |
| DI 659      | SW 10       | M6      |    |    | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100    |
| DI 435      | SW 13       | M8      | 1  | 1  | !  | 1  | 15 | 1  | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100    |

Bestell-Beispiel: DI 679/30



# STAHL, MIT SELBSTSCHNEIDENDEM GEWINDE

Distanzbolzen


Typ 6-kant Ausführung innen/außen

mit Freistich

THIC Preistic

Material Stahl 1.0718 Oberfläche verzinkt (A3F)





Außengewinde G1 [mm]

Innengewinde G2 [mm]

| Gewindegröße | 13 | d1  | d2  |
|--------------|----|-----|-----|
| ST2,2        | 5  | 2,1 | 1,6 |
| ST2,9        | 6  | 2,8 | 2,1 |
| ST3,3        | 6  | 3,2 | 2,3 |
| ST3,5        | 7  | 3,4 | 2,6 |
| ST4,2        | 8  | 4,1 | 3,0 |
| ST4,8        | 8  | 4,7 | 3,5 |
| ST6,3        | 10 | 6,1 | 4,8 |

| L (mm) | 12 (mm) |
|--------|---------|
| 8      | 5       |
| 10     | 6       |
| 12     | 7       |
| 15     | 10      |
| 20     | 10      |

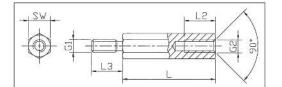
Toleranz für Längenabmaße: +/- 0,1 mm

Standardlängen [mm]

| Bestell-Nr. | SW (mm) | Gewindegröße G1 | Gewindegröße G2 | 80 | 10 | 12 | 15 | 20 |
|-------------|---------|-----------------|-----------------|----|----|----|----|----|
| DI 691      | 5       | ST2,2           | M2,5            | 08 | 10 | 12 | 15 | 20 |
| DI 692      | 5,5     | ST2,9           | M3              | 08 | 10 | 12 | 15 | 20 |
| DI 690      | 5,5     | ST3,3           | M3              | 80 | 10 | 12 | 15 | 20 |
| DI 693      | 6       | ST3,5           | M3              | 08 | 10 | 12 | 15 | 20 |
| DI 694      | 7       | ST4,2           | M4              | 08 | 10 | 12 | 15 | 20 |
| DI 695      | 8       | ST4,8           | M5              | 08 | 10 | 12 | 15 | 20 |
| DI 696      | 10      | ST6,3           | M6              |    | 10 | 12 | 15 | 20 |

Bestell-Beispiel: DI 691/15




# EDELSTAHL, METRISCHES GEWINDE

Тур 6-kant Ausführung innen / außen

mit Freistich

Edelstahl 1.4305 Material





Innengewindelängen [L2 in mm]

Außengewindelängen [L3 in mm]

| L     | M2.5+M3 | M4 | M5 | M6 | M8 |
|-------|---------|----|----|----|----|
| 5     | 2,5     |    |    |    | 1  |
| 8     | 5       | 5  |    |    |    |
| 10    | 6       | 6  | 6  | 5  |    |
| 12    | 7       | 8  | 8  | 7  |    |
| 15    | 7       | 9  | 10 | 10 | 10 |
| 18    | 7       | 9  | 10 | 12 | 12 |
| ab 20 | 7       | 9  | 10 | 12 | 14 |

M3 6 8 M5 8 10 M6 M8 14

Mindestzugfestigkeit: 750 N/mm<sup>2</sup> Toleranz für Längenabmaße: +/- 0,1 mm (für SW 13 gilt DIN 2768-m)

#### Längen [mm]

| Bestell-Nr. | SW (6-kant) | Gewinde | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
|-------------|-------------|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|
| DI 540      | SW 5        | M2,5    | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |    |    | 1  |    |    |    |    |     |
| DI 674      | SW 5,5      | M3      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 |    |    |    |    |    | 1   |
| DI 675      | SW 7        | M4      | -  | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 676      | SW 8        | M5      |    |    | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 677      | SW 10       | M6      | 1  |    | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 548      | SW 13       | M8      |    |    |    |    | 15 |    | 20 | 25 | 30 | 35 | 40 | 45 | 50 |    | 60 |    | 70 |    | 80 |    | 90 |    | 100 |

Bestell-Beispiel: DI 450/55

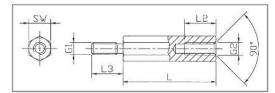


# ALUMINIUM, METRISCHES GEWINDE

Distanzbolzen

Typ 6-kant Ausführung innen / außen mit Freistich

Material Aluminium 3.1655


Innengewindelängen [L2 in mm]

| L     | M2.5+M3 | M4 | M5 | M6 | M8             |
|-------|---------|----|----|----|----------------|
| 5     | 2,5     |    |    |    |                |
| 8     | 5       | 5  |    |    | †.n.n.n.n<br>! |
| 10    | 6       | 6  | 6  | 5  | !              |
| 12    | 7       | 8  | 8  | 7  |                |
| 15    | 7       | 9  | 10 | 10 | 10             |
| 18    | 7       | 9  | 10 | 12 | 12             |
| ab 20 | 7       | 9  | 10 | 12 | 14             |

Außengewindelängen [L3 in mm]

| G1=G2 | L3 |
|-------|----|
| M3    | 6  |
| M4    | 8  |
| M5    | 8  |
| M6    | 10 |
| M8    | 14 |





Mindestzugfestigkeit: 310 N/mm² Toleranz für Längenabmaße: +/- 0,1 mm (für SW 13 gilt DIN 2768-m)

#### Längen [mm]

| Bestell-Nr. | SW (6-kant) | Gewinde | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55     | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
|-------------|-------------|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|--------|----|----|----|----|----|----|----|----|-----|
| DI 502      | SW 5        | M2,5    | 05 | 80 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55     | 60 | ĺ  | 1  |    |    |    |    |    |     |
| DI 503      | SW 5,5      | M3      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55     | 60 |    |    |    |    |    |    |    |     |
| DI 506      | SW 6        | M3      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55     | 60 | 65 | 70 | !  |    |    |    |    | 1   |
| DI 510      | SW 7        | M4      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55     | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 514      | SW 8        | M5      | -  | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55     | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 507      | SW 10       | M6      |    |    | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55     | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 515      | SW 13       | M8      |    |    |    |    | 15 |    | 20 | 25 | 30 | 35 | 40 | 45 | 50 | ;<br>: | 60 | !  | 70 |    | 80 |    | 90 |    | 100 |

Bestell-Beispiel: DI 502/40



# POLYAMID MIT MESSINGGEWINDE

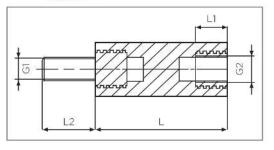
Distanzbolzen

Тур 6-kant Ausführung innen / außen

Material Körper: Polyamid 6.6

Gewinde: Messing vernickelt

Farbe weiß **UL-Klassifizierung** 


Durchgangswiderstand: 1012 Ohm/cm Durchschlagfestigkeit: 50 kV/mm Toleranz für Längenabmaße: +/- 0,1 mm

| Bestell-Nr | : SW (6-kant) | Gewinde | Längen (L) in mm Staffelung |
|------------|---------------|---------|-----------------------------|
| DI 682     | SW 6          | M2,5    | 15-65                       |
| DI 683     | SW 6          | M3      | 15-65                       |
| DI 684     | SW 8          | M4      | 15-65                       |
| DI 685     | SW 10         | M5      | 15-70                       |

Bestell-Beispiel: DI 684/17

Achtung: Die Auszugs- und Drehmomente können in Abhängigkeit von Einsatzzweck und Umwelteinflüssen (z.B. Temperatur, Luftfeuchtigkeit etc.) schwanken. Bitte bei kritischen Anwendungen Versuche durchführen. Die Firma Alutronic übernimmt keine Haftung für die Festigkeitswerte.





SW6 | M2,

SW10 | M5

SW6

SW8

#### Festigkeitswerte

Gewindelängen [mm]

| G1=G2 | L1 | L2 |
|-------|----|----|
| M2,5  | 6  | 6  |
| МЗ    | 6  | 6  |
| M4    | 6  | 8  |
| M5    | 6  | 10 |

Drehmomente Auszugsmomente [Nm] [N]

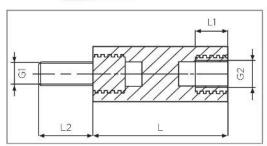
|   | M2,5 | 1,3   | SW6  | M2,5 | 300 |
|---|------|-------|------|------|-----|
|   | M3   | 1,3   | SW6  | M3   | 300 |
|   | M4   | : 3,0 | SW8  | M4   | 600 |
| ) | M5   | 4,5   | SW10 | M5   | 800 |

# POLYAMID MIT MESSINGGEWINDE

Distanzbolzen

Тур 6-kant Ausführung innen / innen

Material Körper: Polyamid 6.6 Gewinde: Messing blank


**UL Klassifizierung** Farbe natur

Durchgangswiderstand: 1012 Ohm/cm Durchschlagfestigkeit: 50 kV/mm Toleranz für Längenabmaße: +/- 0,2 mm

| Bestell-Nr. | SW (6 | -kant) | C | ewinde | Längen (L) in mm Staffelung |
|-------------|-------|--------|---|--------|-----------------------------|
| DI 597      | ; sw  | / 13   | i | M6     | 25-100                      |
| DI 598      | SW    | 15     | 1 | M8     | 25-100                      |

Achtung: Die Auszugs- und Drehmomente können in Abhängigkeit von Einsatzzweck und Umwelteinflüssen (z.B. Temperatur, Luftfeuchtigkeit etc.) schwanken. Bitte bei kritischen Anwendungen Versuche durchführen. Die Firma Alutronic übernimmt keine Haftung für die Festigkeitswerte.





Festigkeitswerte

Gewindelängen

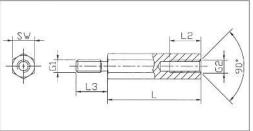
| L1 | L2       |  |  |  |
|----|----------|--|--|--|
| 11 | 12       |  |  |  |
| 11 | 14       |  |  |  |
|    | L1<br>11 |  |  |  |

| Drehm           | om   | ente  |
|-----------------|------|-------|
| [Nm]            | 0111 | Circo |
| 7 Page 250 1544 |      |       |

| SW13 | : M6 | 12,0 |
|------|------|------|
| SW15 | . M8 | 18,0 |

| Auszugs | momente |
|---------|---------|
| [N]     |         |

| SW13 | 111   | M6 | 1 | 1000 |
|------|-------|----|---|------|
| SW15 | 1 1 1 | M8 | - | 1600 |




# POLYAMID, METRISCHES GEWINDE

Distanzbolzen

Typ 6-kant
Ausführung innen / außen
Material Polyamid 6.6
Farbe schwarz
UL-Klassifizierung V2





Durchgangswiderstand DIN 53 482: >1012 Ohm/cm Durchschlagfestigkeit DIN 54 481: 40 kV/mm Toleranz für Längenabmaße: +/- 0,1 mm

| Bestell-<br>Nr. | SW<br>(6-kant) | Gewinde | Standardlängen in<br>mm-Staffelung |
|-----------------|----------------|---------|------------------------------------|
| DI 627          | SW 5           | M2,5    | von 5 mm bis 45 mm                 |
| DI 638          | SW 6           | M3 ;    | von 5 mm bis 60 mm                 |
| DI 628          | SW 8           | M4      | von 5 mm bis 60 mm                 |
| DI 629          | SW 10          | M5      | von 8 mm bis 65 mm                 |
| DI 630          | SW 10          | M6      | von 8 mm bis 60 mm                 |

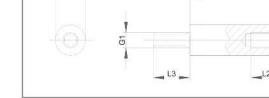
Innengewindelängen [mm]

| L (mm) | L2 (mm) |  |  |
|--------|---------|--|--|
| 5      | 3,0     |  |  |
| ab 6   | 4,0     |  |  |
| ab 8   | 6,0     |  |  |
| ab 10  | 8,0     |  |  |
| ab 12  | 10.0    |  |  |

Außengewindelängen [mm]

| G1=G2 | L3 (mm) |  |  |
|-------|---------|--|--|
| M2,5  | 8       |  |  |
| M3    | 8       |  |  |
| M4    | :8      |  |  |
| M5    | . 8     |  |  |
| M6    | 10      |  |  |

Bestell-Beispiel: DI 627/6


# POLYAMID, METRISCHES GEWINDE

Distanzbolzen

Typ rund
Ausführung innen / außen
Material Polyamid 6.6
Farbe schwarz

UL-Klassifizierung V2

Rd



Durchgangswiderstand DIN 53 482: >1012 Ohm/cm Durchschlagfestigkeit DIN 54 481: 40 kV/mm Toleranz für Längenabmaße: +/- 0,1 mm

| Bestell-<br>Nr. | Durchmesser<br>(mm) | Gewinde | Standardlängen in<br>mm-Staffelung |  |  |
|-----------------|---------------------|---------|------------------------------------|--|--|
| DI 594          | 6                   | M3      | von 5 mm bis 60 mm                 |  |  |
| DI 599          | . 8                 | M4 :    | von 5 mm bis 60 mm                 |  |  |

Bestell-Beispiel: DI 594/10

Innengewindelängen [mm]

| L (mm) | L2 (mm) |  |  |
|--------|---------|--|--|
| 5      | 3,0     |  |  |
| ab 6   | 4,0     |  |  |
| ab 8   | 6,0     |  |  |
| ab 10  | 8,0     |  |  |
| ab 12  | 10,0    |  |  |

Außengewindelängen [mm]

8

| G1=G2 | L3 (mm) |
|-------|---------|
| M2,5  | 8       |
| M3    | 8       |
| M4    | 8       |
| M5    | 8       |
| M6    | 10      |

# MESSING, METRISCHES GEWINDE

#### Distanzbolzen

Typ 6-kant

Ausführung außen / außen

mit Freistich

MaterialMessing 2.0401Oberflächevernickelt (G3E)

Außengewindelängen [mm]

| G1=G2 | L2=L3 |
|-------|-------|
| M2    | 5     |
| M2,5  | 6     |
| M3    | 6+8   |
| M4    | 8     |
| M5    | 8     |
| M6    | 10    |

(Abbildung in Messing blank, optional bl.)

Mindestzugfestigkeit: 430 N/mm² Toleranz für Längenabmaße: +/- 0,1 mm

#### Längen [mm]

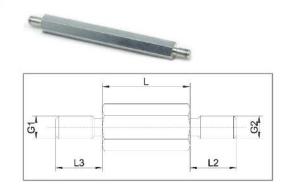
| Bestell-Nr. | SW (6-kant) | Gewinde | 05 | 06 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55    | 60  | 65 | 70 | 75 | 80  | 85 | 90     | 95   | 100  |
|-------------|-------------|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-------|-----|----|----|----|-----|----|--------|------|------|
| DI 522      | SW 4        | M2      | 05 | 06 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |       |     |    |    |    |     |    |        |      | i i  |
| DI 523      | SW 4        | M2,5    | 05 | 06 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | (15S) | 858 |    |    |    | 130 |    | SS (1) | nen! | 0007 |
| DI 524      | SW 5        | M2,5    | 05 | 06 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55    | 60  |    |    |    |     |    |        |      |      |
| DI 525      | SW 5        | M3      | 05 | 06 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55    | 60  |    |    |    |     |    |        |      |      |
| DI 526      | SW 5,5      | M3      | 05 | 06 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55    | 60  | 65 | 70 |    |     |    |        |      |      |
| DI 527      | SW 6        | M3      | 05 | 06 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55    | 60  | 65 | 70 |    |     |    |        |      |      |
| DI 528      | SW 7        | M4      | 05 | 06 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55    | 60  | 65 | 70 | 75 | 80  | 85 | 90     | 95   | 100  |
| DI 529      | SW 8        | M5      |    |    | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55    | 60  | 65 | 70 | 75 | 80  | 85 | 90     | 95   | 100  |
| DI 530      | SW 10       | M6      | 1  |    |    | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55    | 60  | 65 | 70 | 75 | 80  | 85 | 90     | 95   | 100  |
| DI 534      | SW 13       | M8      |    |    |    |    |    | 15 |    | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55    | 60  | 65 | 70 | 75 | 80  | 85 | 90     | 95   | 100  |

Bestell-Beispiel: DI 522/30



# STAHL, METRISCHES GEWINDE

#### Distanzbolzen


Typ 6-kant Ausführung außen / außen

mit Freistich

Material Stahl 1.0718 Oberfläche verzinkt (A3F)

Außengewindelängen [mm]

| G1=G2 | L2=L3 |
|-------|-------|
| M2    | 15    |
| M2,5  | 16    |
| M3    | 6     |
| M4    | : 8   |
| M5    | : 8   |
| M6    | 10    |
| M8    | 14    |



Mindestzugfestigkeit: 500 N/mm<sup>2</sup> Toleranz für Längenabmaße: +/- 0,1 mm (für SW 13 gilt DIN 2768-m)

Längen [mm]

| Bestell-Nr. | SW (6-kant) | Gewinde | 05 | 80 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70  | 75 | 80 | 85 | 90 | 95 | 100 |
|-------------|-------------|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|-----|
| DI 549      | SW 4        | M2      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 |    |    |    |    |    | i i |    |    |    |    |    |     |
| DI 550      | SW 4        | M2,5    | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 |    |    |    |    |    |     |    |    |    |    |    |     |
| DI 551      | SW 5        | M2,5    | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |    |    |    |     |    |    |    |    |    |     |
| DI 552      | SW 5        | M3      | 05 | 80 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |    |    |    |     |    |    |    |    |    |     |
| DI 543      | SW 5,5      | M3      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70  |    |    |    |    |    |     |
| DI 544      | SW 6        | M3      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70  | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 545      | SW 7        | M4      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70  | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 546      | SW 8        | M4      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70  | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 547      | SW 8        | M5      |    | 80 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70  | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 537      | SW 10       | M6      |    |    | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70  | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 554      | SW 13       | M8      |    |    |    |    | 15 |    | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70  | 75 | 80 | 85 | 90 | 95 | 100 |

Bestell-Beispiel: DI 544/20

# EDELSTAHL, METRISCHES GEWINDE

Typ 6-kant Ausführung außen / außen

mit Freistich

Edelstahl 1.4305 Material

L2 \_

L3

Außengewindelängen [L3 in mm]

| G1=G2   | L2=L3  |
|---------|--------|
| M2.5-M3 | 6      |
| M4 :    | 8      |
| M5      | 8      |
| M6      | 10     |
| M8      | DI 514 |

Mindestzugfestigkeit: 750 N/mm<sup>2</sup> Toleranz für Längenabmaße: +/- 0,1 mm (für SW 13 gilt DIN 2768-m)

Längen [mm]

| Bestell-Nr. | SW (6-kant) | Gewinde | 05 | 80 | 10 | 12 | 15 | 18   | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
|-------------|-------------|---------|----|----|----|----|----|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|
| DI 555      | SW 5        | M2,5    | 05 | 08 | 10 | 12 | 15 | 18   | 20 | 25 | 30 | 35 | 40 | 45 | 50 |    |    |    |    |    |    |    |    |    |     |
| DI 556      | SW 5,5      | M3      | 05 | 08 | 10 | 12 | 15 | 18   | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 |    |    |    |    |    |     |
| DI 557      | SW 7        | M4      |    | 08 | 10 | 12 | 15 | 18   | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 559      | SW 8        | M5      |    |    | 10 | 12 | 15 | 18   | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 560      | SW 10       | M6      |    |    | 10 | 12 | 15 | 18   | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 561      | SW 13       | M8      |    |    |    |    | 15 | 0.00 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |    | 60 |    | 70 |    | 80 |    | 90 |    | 100 |

Bestell-Beispiel: DI 555/45

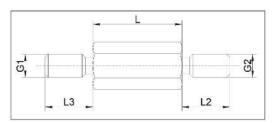


# ALUMINIUM, METRISCHES GEWINDE

Distanzbolzen

6-kant Тур

Ausführung außen / außen


mit Freistich

Material Aluminium 3,1655

Außengewindelängen [L3 in mm]

| G1=G2 | L2=L3 |
|-------|-------|
| M3    | 6     |
| M4    | 8     |
| M5    | 8     |
| M6    | 10    |
| M8    | 14    |





Mindestzugfestigkeit: 310 N/mm<sup>2</sup> Toleranz für Längenabmaße: +/- 0,1 mm (für SW 13 gilt DIN 2768-m)

#### Längen [mm]

| Bestell-Nr. | SW (6-kant) | Gewinde | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
|-------------|-------------|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|
| DI 508      | SW 5        | M2,5    | 05 | 80 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |    |    |    |    |    |    |    |    |    |     |
| DI 509      | SW 5,5      | M3      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 |    |    |    |    |    |     |
| DI 516      | SW 6        | M3      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 |    |    |    |    |    |     |
| DI 517      | SW 7        | M4      | 05 | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 518      | SW 8        | M5      |    | 08 | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 519      | SW 10       | M6      |    |    | 10 | 12 | 15 | 18 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
| DI 595      | SW 13       | M8      |    |    |    |    | 15 |    | 20 | 25 | 30 | 35 | 40 | 45 | 50 |    | 60 |    | 70 |    | 80 |    | 90 |    | 100 |

Bestell-Beispiel: DI 508/18

# POLYAMID MIT MESSINGGEWINDE

Distanzbolzen

Тур 6-kant

außen / außen

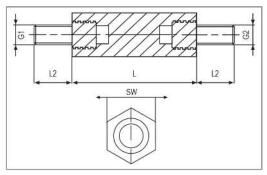
Ausführung ohne Freistich DIN 76

Material Körper: Polyamid 6.6

Gewinde: Messing vernickelt

UL Klassifizierung V2 Farbe weiß

#### Festigkeitswerte


Gewindelängen [mm]

| G1=G2 | L2 (mm) |
|-------|---------|
| M2,5  | 6       |
| M3    | 6       |
| M4    | 8       |
| M5    | 10      |

| Drehmomente |  |
|-------------|--|
| [Nm]        |  |

| SW6  | M2,5 | 1,3 |
|------|------|-----|
| SW6  | M3   | 1,3 |
| SW8  | M4   | 3,0 |
| SW10 | M5   | 4,5 |

| Auszug<br>[N] | smome | ente |
|---------------|-------|------|
| SW6           | M2,5  | 300  |
| SW6           | M3    | 300  |
| SW8           | M4    | 600  |
| SW10          | M5    | 800  |



Achtung: Die Auszugs- und Drehmomente können in Abhängigkeit von Einsatzzweck und Umwelteinflüssen (z.B. Temperatur, Luftfeuchtigkeit etc.) schwanken. Bitte bei kritischen Anwendungen Versuche durchführen. Die Firma Alutronic übernimmt keine Haftung für die Festigkeitswerte.

Durchgangswiderstand: 1012 Ohm/cm 50 kV/mm Durchschlagfestigkeit: Toleranz für Längenabmaße: +/- 0,1 mm

| Bestell-Nr. | SW (6-kant) | Gewinde | Längen (L) in mm Staffelung |
|-------------|-------------|---------|-----------------------------|
| DI 686      | SW 6        | M2,5    | 15-65                       |
| DI 687      | SW 6        | M3      | 15-65                       |
| DI 688      | SW 8        | M4      | 15-65                       |
| DI 689      | SW 10       | M5      | 15-70                       |



# POLYAMID MIT MESSINGGEWINDE

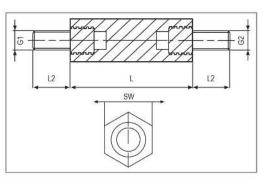
Typ Ausführung 6-kant

außen / außen

ohne Freistich DIN 76 Material Körper: Polyamid 6.6

Gewinde: Messing blank

Farbe




Festigkeitswerte

Gewindelängen

| G1=G2 | L2 (mm) |
|-------|---------|
| M6    | 12      |
| M8    | 14      |

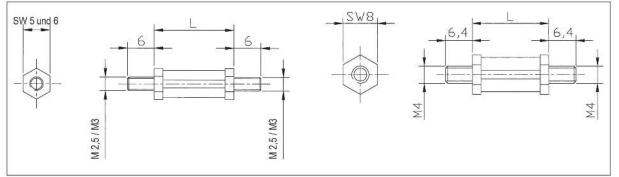
Drehmomente Auszugsmomente SW13 | M6 | 1000 SW13 | M6 | 12,0 SW15 | M8 18,0 SW15 | M8 1600



Achtung: Die Auszugs- und Drehmomente können in Abhängigkeit von Einsatzzweck und Umwelteinflüssen (z.B. Temperatur, Luftfeuchtigkeit etc.) schwanken. Bitte bei kritischen Anwendungen Versuche durchführen. Die Firma Alutronic übernimmt keine Haftung für die Festigkeitswerte.

 $10^{12}\,\mathrm{Ohm/cm}$ Durchgangswiderstand: Durchschlagfestigkeit: 50 kV/mm Toleranz für Längenabmaße: +/- 0,2 mm

| Bestell-Nr. | SW (6-kant) | Gewinde | Längen (L) in mm Staffelung |
|-------------|-------------|---------|-----------------------------|
| DI 590      | SW 13       | M6      | 25-100                      |
| DI 579      | SW 15       | M8 :    | 25-100                      |

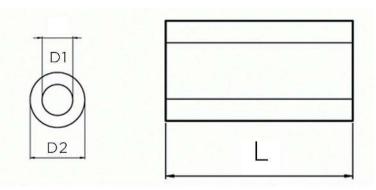

# POLYAMID, METRISCHES GEWINDE

Distanzbolzen

6-kant Тур Ausführung außen / außen Material Polyamid 6.6

UL Klassifizierung V2 Farbe schwarz






Durchgangswiderstand DIN 53 482: >1012 Ohm/cm Durchschlagfestigkeit DIN 54 481: 40 kV/mm Toleranz für Längenabmaße: +/-0,1 mm

| Bestell-Nr. | SW (6-kant) | Gewinde | Standardlängen in mm-Staffelung |
|-------------|-------------|---------|---------------------------------|
| DI 576      | SW 5        | M2,5    | von 3 mm bis 65 mm              |
| DI 577      | SW 6        | M3      | von 5 mm bis 65 mm              |
| DI 578      | SW 8        | M4      | von 5 mm bis 65 mm              |







Material: Polysterol Wärmebeständigkeit: 70°C Farbe: Black Durchschlagsfestigkeit: 90 V/mm

| Variante | Innen-<br>durchmesser -<br>D1 [mm] | Außen-<br>durchmesser -<br>D2 [mm] |    | Länge - L [mm] |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----------|------------------------------------|------------------------------------|----|----------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| DI 600   | 3,6                                | 7                                  | 2  | 3              | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| DIBUU    | 3,0                                | /                                  | 19 | 20             | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
| DI 610   | 15                                 | 8                                  | 2  | 3              | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| DIDIO    | 4,5                                | Ø)                                 | 19 | 20             | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
| DI 615   | FF                                 | 10                                 | 2  | 3              | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| DI 015   | 5 5,5 10                           | 19                                 | 20 | 21             | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |    |

Material: Makrolon
Wärmebeständigkeit: 135°C
Farbe: Grau
Durchschlagsfestigkeit: 90 KV/mm

Variante Unnen- Außen- Länge - L [mm]

D1 [mm] D2 [mm]

| Variante | D1 [mm] | D2 [mm] |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----------|---------|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| DIGOI    | 3.6     | 7       | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| DIOOI    | 1 0,0   | /       | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
| DI 611   | A E     | 0       | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| DIOII    | 4,3     | 9       | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
| DISIS    | l ee    | 10      | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| DI 616   | 5,5     | 10      | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |

Material: Messing, vernickelt

Toleranz: +/- 0,1mm

| Variante | Innen-<br>durchmesser -<br>D1 [mm] | Außen-<br>durchmesser -<br>D2 [mm] |    |    |    |    |    |    | L  | äng | e - L | [mm | 1  |    |    |    |    |    |    |
|----------|------------------------------------|------------------------------------|----|----|----|----|----|----|----|-----|-------|-----|----|----|----|----|----|----|----|
| DI 617   | 7.0                                | 6                                  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9   | 10    | 11  | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| E.       | 5,2                                | Q                                  | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26  | 27    | 28  | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
| DI 618   | u sa                               | 8                                  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9   | 10    | 11  | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| DI 010   | 4,3                                | 9                                  | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26  | 27    | 28  | 29 | 30 | 31 | 32 | 33 | 34 | 35 |



#### WK800 (Hernon 746)



**WK 800** ist ein thermisch ausgezeichnet leitender Zweikomponentenkleber mit sehr kurzer Aushärtezeit. Er bietet eine effektive thermische Verbindung zwischen elektronischen Bauteilen und Kühlkörper. Das Material hat eine außergewöhnliche Hafteigenschaft - damit entfällt der Bedarf von mechanischer Befestigung.

Der Kleber besteht aus einem pastösen Kleber WK 800 und einem flüssigen Aktivator WK 800-A. Der Kleber ist in den Gebindegrößen **4ml** und **25ml** (Spritze) erhältlich, der Aktivator als **10ml** Pinselflasche Die Komponenten werden nicht gemischt. Es genügt das Aufbringen einer kleinen Menge des Klebers auf einer der zu verklebenden Fläche und das Einstreichen der anderen Klebefläche mit dem Aktivator. Das Fügen erfolgt durch Pressen. Eine Korrektur ist innerhalb von 15-30 Sekunden möglich. Die Verklebung ist bei Raumtemperatur nach 5 Minuten handfest und härtet innerhalb von 24 Stunden vollständig aus.

Umfangreiche Tests haben die hervorragenden thermischen und mechanischen Eigenschaften des WK 800 bewiesen. Durch laufende Qualitätsüberwachung wird eine gleich bleibende Qualität garantiert. Für spezifische Anwendungen sollten eingehende Test durchgeführt werden.

|                             |         | WK 800       |
|-----------------------------|---------|--------------|
| Farbe                       |         |              |
| Max. Klebespalt             | [mm]    | 0,25         |
| Scherfestigkeit             | [N/mm²] | 5,5          |
| Zugfestigkeit               | [N/mm²] | 15,2         |
| Wärmeausdehnungskoeffizient | [ppm/K] | 110          |
| Thermische Leitfähigkeit    | [W/mK]  | 0,76         |
| Durchschlagsfestigkeit      | [kV/mm] | 26,78        |
| Brennbarkeit                |         | V-0          |
| Verarbeitungstemperatur     | [°C]    | 20-28        |
| Betriebstemperatur          | [°C]    | -55 bis +150 |
| Lagertemperatur             | [°C]    | 8 - 28       |
| Lagerfähigkeit bei 22°C     | [Jahre] | min. 3       |

#### **ANWENDUNGSBEREICHE**

**WK 800** befestigt Kühlkörper auf Komponenten und Bauteilen. Er lässt Bauteile und Komponenten auch sicher an vertikalen Kühlflächen haften, ebenso an metallischen Gehäuseflächen, Seitenwänden ohne Klammern, Schrauben oder sonstige mechanische Befestigung. Typische Anwendungen sind das Kleben von Transformatoren, Transistoren, Mikroprozessoren und andere Wärme abgebenden Komponenten auf Leiterplatten oder Kühler. Besonders gut geeignet ist WK 800 zur Befestigung von LED-Chips am Kühlkörper.

WK 800 hat viele Vorteile gegenüber traditionellen Klebeverbindungen wie z.B. thermische Heißkleber oder Epoxidkleber. Er gewährleistet eine dauerhafte Anwendung bei zuverlässiger Einhaltung der thermischen und technischen Eigenschaften. Der Kleber kann leicht verarbeitet werden und reduziert somit erheblich die Kosten in der Fertigung sowie Reparaturzeiten im Service.

Mit WK 800 Kleber bzw. Aktivator benetzte Flächen können nahezu unbegrenzt ruhen, ohne dass sich die Eigenschaften der Klebestelle verschlechtern.

## ANWENDUNGSHINWEISE

Empfohlene Hilfsmittel: Baumwolltuch, nicht fasernd, Reinigungsmittel [z.B. Toluene, Isopropyl Alkohol] Bitte beachten Sie Sicherheitsvorschriften für die Lösungsmittel. Bei längeren Arbeiten Gummihandschuhe tragen!





# Inhaltsverzeichnis

| Technische Grundlagen              | .168 |
|------------------------------------|------|
|                                    |      |
| Ihre Ansprechpartner bei Alutronic | .174 |
|                                    |      |
| Distributoren / Vertriebsnetz      | .176 |

Kontaktinformationen -

ob Sie einen Ansprechpartner suchen oder die Antwort auf eine technische Fragestellung:

Hier werden Sie fündig.





## Aufgabe und Verwendungszweck eines Kühlkörpers

An der Sperrschicht von Halbleiterbauelementen und Widerständen setzt sich die elektrische Verlustleistung (Pv) in Wärme (Q) um und verursacht eine Temperaturerhöhung.

Die Temperatur der Sperrschicht (9J) darf einen maximalen Wert nicht überschreiten, um einen stabilen Betrieb zu gewährleisten und die Zerstörung des Halbleiters zu vermeiden. Diese maximal zulässige Sperrschichttemperatur kann den Datenblättern der Halbleiterhersteller entnommen werden.

Kann die entstehende Wärme nicht mehr ausreichend über das Halbleitergehäuse an das umgebende Medium, meistens Luft, abgeführt werden, so muss das Bauteil auf einen Kühlkörper montiert werden.

Die zur Wärmeabgabe wirksame Gehäuseoberfläche wird somit vergrößert. Dies führt zu einer höheren Zuverlässigkeit und Lebensdauer des Halbleiters bzw. der gesamten Schaltung.

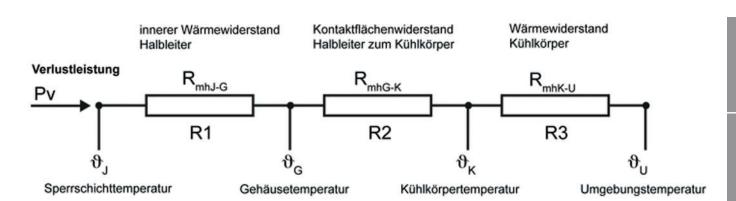
Ein Kühlkörper besteht aus gut wärmeleitenden Materialien, meist einer Aluminiumlegierung mit einer für den Anwendungsfall angepassten und geeigneten geometrischen Struktur und Oberflächenbeschaffenheit.

Verwendete Materialien sind:

- AlMgSi 0,5 F22 für Aluminium-Strangpressprofile
- AlSi8Cu3 für Aluminium-Druckgussteile
- Al99,9 hh für Aluminium-Bandmaterial

## Funktionsweise eines Kühlkörpers - Wärmeabgabe und Konvektionsarten

Der Wärmetransport von der Wärmequelle (z.B. Sperrschicht des Halbleiters) über den Kühlkörper an das umgebende Medium setzt sich zusammen aus:


- dem Wärmeübergang von der Wärmequelle auf den Kühlkörper
- der Wärmeleitung innerhalb des Kühlkörpers an die Kühlkörperoberfläche
- dem Wärmeübergang von der Oberfläche durch freie oder erzwungene Konvektion an das umgebende Medium
- der Wärmestrahlung je nach Oberflächenbeschaffenheit

### Der Wärmewiderstand und das thermische Ersatzschaltbild

Der Wärmewiderstand ist definiert als das Verhältnis des Temperaturanstieges bei einer zugeführten Leistung und dient als Maß für das Wärme-Abgabevermögen von Kühlkörpern und deren Vergleichbarkeit.

Je kleiner der Wärmewiderstand, desto geringer ist der zu erwartende Temperaturanstieg und desto "besser" ist ein Kühlkörper. Der Wärmewiderstand wird angegeben in K/W (Kelvin/Watt).

Kühlkörper und Halbleiter bilden eine Funktionseinheit, die analog zum Ohmschen Gesetz in der Elektrotechnik als thermisches Ersatzschaltbild dargestellt werden kann:



Gliederung in folgende Bereiche:

- Einspeisung der Verlustleistung (Pv) wird umgesetzt in den Wärmestrom (Q)
- Wärmeleitung von der Sperrschicht auf die Montagefläche des Bauteils
- Wärmeabgabe des Kühlkörpers an das umgebende Medium

RthK = Wärmewiderstand Kühlkörper in K/W

9jmax = Maximale Sperrschicht (Junction), Temperatur des Halbleiters in °C (aus Datenblatt)

9U = Umgebungstemperatur in °C

Pv = der Wärmequelle zugeführte Verlustleistung in W

RthjG = Innerer Wärmewiderstand, Sperrschicht zum Gehäuse des Halbleiters in K/W

RthGK = Wärmeübergangswiderstand an den Montageflächen in K/W (lässt sich mittels Wärmeleitpaste auf einen minimalen Wert verringern)
Bei isolierter Montage sind die spez. Wärmewiderstände der Isoliermaterialien zu berücksichtigen.

## $\Delta \vartheta$ = Temperaturdifferenz in K

Jeder Kühlkörper mit einem kleineren Wärmewiderstand als dem errechneten ist für diesen Einsatz geeignet.

Berechnung des erforderlichen Wärmewiderstandes bei gegebener Verlustleistung und dem zulässigen Temperaturgefälle:

$$R_{thK} = \frac{\vartheta_{jmax} - \vartheta_{j}}{P_{v}} - (R_{thjG} + R_{thGK}) = \frac{\Delta \vartheta}{P_{v}} - (R_{thjG} + R_{thGK})$$



Jeder Kühlkörper mit einem kleineren Wärmewiderstand als dem errechneten ist für diesen Einsatz geeignet.

## Die Messung und Messbedingungen für den Wärmewiderstand

Alle im Katalog angegebenen Werte sind im Hause ALUTRONIC unter folgenden Bedingungen gemessen worden:

- Natürliche Konvektion
- Kühlkörper mattschwarz eloxiert
- Vertikale Anordnung der Rippen
- eine Wärmequelle im Zentrum des Kühlkörpers (soweit nicht anders angegeben)
- Temperaturmessung zwischen Halbleiter- und Kühlkörpermontagefläche vertikale Anordnung der Rippen
- Verwendung von Wärmeleitpaste
- Messung der Umgebungstemperatur in 1 m Abstand vom Messobjekt

Die gemessenen Werte sind angegeben als Temperaturerhöhung in Abhängigkeit von der zugeführten Leistung bei unterschiedlichen Profillängen.

Daraus errechnet sind die Wärmewiderstände für die zugehörigen Leistungen jeweils in einer nebenstehenden Tabelle zusammengestellt. Diese Tabellen zeigen die Abhängigkeit des Wärmewiderstandes von der zugeführten Leistung und der Längenabschnitte.

Daraus lässt sich z. B. auch ableiten, ab welcher Länge ein bestimmtes Kühlprofil noch sinnvoll einzusetzen ist. Zusätzlich angegeben ist das Gewicht in g.

# Einfluss des Thermischen Übergangswiderstandes

Dem thermischen Kontakt zwischen Halbleitergehäuse und Montagefläche des Kühlkörpers ist besondere Aufmerksamkeit zu widmen. Er ist abhängig von Oberflächengüte (Rauhtiefe), Ebenheit, Anpressdruck und verwendeten Isolier- und Füllmaterialien.

## Einfluss der Oberflächenfarbe eines Kühlkörpers

Der Einfluss des Strahlungsanteils (schwarze Oberfläche) eines Kühlkörpers auf dessen Wärmewiderstand wird oft falsch eingeschätzt. Eine allgemeine Regel lässt sich nicht ableiten.

Ein Rippenkühlkörper strahlt im Wesentlichen nur über seine Umrissfläche Wärme ab. Die Rippenzwischenräume sind meist zu eng, als dass hier Strahlung nach außen dringt, und es findet nur ein Strahlungsaustausch zwischen den gegenüberliegenden Rippenflächen statt.

Der Strahlungsanteil steigt also nicht proportional mit der für die Konvektion zur Verfügung stehenden Fläche an. Der prozentuale Strahlungsanteil an der Wärmeabgabe ist bei einer einfachen Kühlfläche wesentlich höher als bei einem vollverrippten Kühlkörper.

Die gängigen Kühlkörper sind optimiert für Konvektion und nicht für Strahlung. Der Strahlungsanteil ist stark temperaturabhängig und nimmt mit der 4. Potenz zu. Wird die Oberflächentemperatur niedrig gehalten, z. B. bei Fremdbelüftung, weil die Wärme immer wieder abtransportiert wird, so kann der Strahlungsanteil

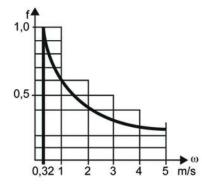
ALUTRONIC SOLUTIONS FOR COOL RESULTS

vernachlässigt werden. Die thermisch isolierende Eloxalschicht kann den Übergangswiderstand eher verschlechtern.

Bei Fremdbelüftung, besonders bei starker Fremdbelüftung, ist ein blanker oder chromatierter Kühlkörper zweckmäßiger. Ein schwarzer Kühlkörper kann auch mehr Strahlungswärme aus seiner Umgebung aufnehmen.

Stehen also irgendwo in der Nähe Bauteile, die höhere Temperaturen annehmen können als der Kühlkörper, und haben diese eine größere strahlende Oberfläche, so kann sich der Effekt auch umkehren und der Kühlkörper wird zusätzlich aufgeheizt (Strahlungsaustausch).

Ein schwarz eloxierter Kühlkörper ist aus wärmetechnischer Sicht meistens sinnvoll bei:


- Eigenkonvektion und höheren Oberflächentemperaturen
- Keinen sonstigen wärmeren Strahlungskörpern in der Nähe
- Bei höherem thermischen Außenwiderstand (Isolierung der Eloxalschicht klein im Vergleich zur Strahlungskomponente)

Darüber hinaus ist natürlich der Oberflächenschutz zu beachten. Bei einer chromatierten Oberfläche bleibt die elektrische Leitfähigkeit erhalten und es ist gleichzeitig ein Oberflächenschutz vorhanden. Dies ist z. B. besonders bei Gehäusen oder Gehäuseteilen wichtig, die EMV-Anforderungen entsprechen müssen.

# Einfluss der Konvektionseigenschaften

Mittels Fremdbelüftung kann der Wärmewiderstand eines Kühlkörpers verringert werden. Ist der Wärmewiderstand für freie Konvektion bekannt, so kann für eine bestimmte überströmte Kühlkörperlänge bei unverändertem Temperaturgefälle der Wärmewiderstand bei unterschiedlichen Anströmgeschwindigkeiten errechnet werden.

Das nachfolgende Diagramm gilt für eine Kühlkörperlänge von 100 mm und einem Temperaturgefälle von 80 K:



Der Faktor f gibt das Verhältnis von Wärmewiderstand bei Eigenkonvektion zu dem Wärmewiderstand bei der gesuchten Luftgeschwindigkeit an.

# Designhilfen für die Konzeption eines neuen KÜHLKÖRPERS

Ein neues Instrument zur Optimierung von Kühlkörpern und auch ganzer Kühlsysteme ist die thermografische Computersimulation. Hiermit können auch kundenspezifische



Sonderprofile in kürzester Zeit wärmetechnisch optimiert und realisiert werden. ALUTRONIC stellt auch hier seine Dienstleistungen zur Lösung kundenspezifischer wärmetechnischer Probleme zur Verfügung.

# Statisches und dynamisches Verhalten eines KÜHLKÖRPERS

Die bisherige Betrachtung gilt für den statischen eingeschwungenen Zustand. Für das transiente Verhalten sind zusätzlich die entsprechenden Wärmekapazitäten und Laufzeiten zu berücksichtigen. Bei Lastpulsen (z. B. beim Anfahren von Fahrzeugen oder Aufzügen) können in kurzer Zeit erhebliche Wärmemengen entstehen, die dann zwischengespeichert werden müssen. Hier sind dann vorrangig hohe Wärmekapazitäten mit möglichst geringen Wärmewiderständen notwendig. In diesem Fall wird ein Aluminium- bzw. Kupferklotz oder auch eine Heatpipe eingesetzt.

## Fertigungstechnische Hinweise

## Presstoleranzen:

Für stranggepresste Profile werden die Normen DIN 1748 - Teil 4 bzw. DIN 17615 - Teil 3 DIN ISO 755 - 9 bzw. DIN ISO 12020 - 2 zugrunde gelegt. Für die in den Profilzeichnungen angegebenen Maße sind diese Normen zu berücksichtigen.

## Bearbeitungstoleranzen:

CNC - Bearbeitungen erfolgen nach DIN 2768 m.

Die Rauhtiefen liegen bei: RZ = 2,5 bis 4,0 für unbearbeitete stranggepresste Profile und RZ< 1,5 bei plangefrästen Flächen. Die Ebenheit auf einer Fläche von 100 x 100 mm beträgt 0,5 bis 1,0 mm für unbearbeitete stranggepresste Profile gem. DIN und 0,1 mm oder besser bei plangefrästen Flächen.

Lufteinschlüsse (Lunker) zwischen den Montageflächen können durch die Verwendung von Wärmeleitpaste beseitigt werden.

Dadurch lässt sich der Wärmeübergangswiderstand (RthGK) verringern. Die Paste sollte jedoch nur so dick wie unbedingt notwendig (Vermeidung von Lufteinschlüssen) aufgetragen werden.

Die herkömmliche Schraubmontage wird heutzutage oft von einer kostengünstigen Federmontage, in Verbindung mit einer bereits im Profil eingezogenen Clipnut, ersetzt. Der Anpressdruck wirkt auf die richtige Stelle des Halbleiters bei geringen Montagezeiten. Andere Bearbeitungstoleranzen erhalten Sie auf Anfrage. Zusätzlich ist zu beachten, dass es bei bestimmten Bauteilen besondere Anforderungen an die Ebenheit der zu montierenden Fläche einzuhalten gilt. Diese sind meist vom Bauteilehersteller vorgegeben und werden nicht immer von den Standardtoleranzen gedeckt. Hier ist Rücksprache zu halten. Um den Anforderungen gerecht zu werden, ist (meist) ein Planfräsen der Montagefläche von Nöten.

Ebenfalls sollte im Vorfeld das gewünschte Anzugsdrehmoment festgelegt werden; im Fall von hohen Anforderungen werden hierbei Drahtgewindeeinsätze verwendet. Bitte beachten Sie auch die Angaben Ihrer Halbleiterhersteller. Die Verwendung von profilgepressten Gewindekanälen liegt in Verantwortung des Verwenders. Die eingepressten Gewinde enthalten presstechnisch keine Gewindesteigung und sind somit nicht normgerecht. Durch versetzte Stege (Rippen) wird diese Steigung nachgebildet.



### Oberflächentechnik:

Bei Oberflächenbehandlungen (eloxieren, chromatieren, etc.) entstehen durch Aufnahme in entsprechenden Gestellen unvermeidbare Klammer- bzw. Kontaktstellen. Im Falle applikationsbedingter Einschränkungen ist eine Abstimmung über die Positionierung von Klammerstellen erforderlich. Sacklöcher werden, anders als bei Durchgangslöchern, nach dem Eloxieren gefertigt oder vor dem Eloxieren gestopft, hierbei können Auslaufspuren entstehen. Bei Sicht- und Dekorteilen werden die Anforderungen gesondert festgelegt.

## Begriffserklärung:

AL = Aluminium Blank

SE = Schwarz eloxiert

CR = Chromatiert

NE = Natur eloxiert

BL = Blau eloxiert

SN = Verzinnt

LS = Lötstift

IR = mit Isolierring

SF = mit montierter Wärmeleitfolie







Hubert Andrejewski Geschäftsführer / Vertriebsleitung

Tel.: +49 2353 / 915 314 andrejewski@alutronic.de



Florian Schlachtenrodt **Betreuung Distributoren** 

Tel.: +49 2353 / 915 306 f.schlachtenrodt@alutronic.de



Kathrin Solmecke Kundenbetreuung

Tel.: +49 2353 / 915 345 solmecke@alutronic.de



Martina Oberstadt **Teamleitung Verkauf** 

Tel.: +49 2353 / 915 315 oberstadt@alutronic.de



Antonio Mancino **Vertrieb vor Ort** 

Tel.: +49 2353 / 915 344 mancino@alutronic.de



Viktor Balzer Kundenbetreuung

Tel.: +49 2353 / 915 318 balzer@alutronic.de





Tim Schlachtenrodt **Geschäftsführer** 

Tel.: +49 2353 / 915 311 tim.schlachtenrodt@alutronic.de



Alexander Kaesche **Qualitätswesen** 

Tel.: +49 2353 / 915 330 kaesche@alutronic.de



Thorsten Kaddatz **Einkaufsleitung** 

Tel.: +49 2353 / 915 324 kaddatz@alutronic.de



Marcus Opitz Fertigungsleitung

Tel.: +49 2353 / 915 334 opitz@alutronic.de



Thomas Lauff **Leitung Eloxalwerk** 

Tel.: +49 2353 / 12896 lauff@alutronic.de



Tobias Schneider **Marketing** 

Tel.: +49 2353 / 915 377 schneider@alutronic.de



### **Deutschland**

## ALUTRONIC Kühlkörper GmbH & Co KG

Hauptniederlassung Auf der Löbke 9-11 D-58553 Halver

Tel.: +49 2353 915 5 Fax: +49 2353 915 333 Mail: info@alutronic.de Internet: www.alutronic.de

#### **Alutronic Bauelemente GmbH**

Mercatorstraße 35 D-21502 Geesthacht

Tel.: +49 4152 888 30 Fax: +49 4152 88 379

Mail: info@alutronic-hamburg.de Internet: www.alutronic-hamburg.de

# **Arrow Central Europe GmbH**

Frankfurter Straße 211 D-63263 Neu-Isenburg

Internet: www.arroweurope.com

#### **Beckmann Elektronik GmbH**

Dieselstr. 7

D-85232 Bergkirchen

Tel.: +49 8131 3118-0 Fax: +49 8131 3118-19

Mail: info@beckmann-elektronik.de Internet: www.beckmann-elektronik.de

### Reichelt Elektronik GmbH & Co. KG

Elektronikring 1 D-26452 Sande

Tel.: +49 4422/955333 Fax: +49 4422 955111 Mail: info@reichelt.de Internet: www.reichelt.de

#### **Thomsen-Elektronik GmbH**

Vorm Endstor 1

D-35753 Greifenstein- Nenderoth

Tel.: +49 6477 91200 Fax: +49 6477 912030

Mail: info@Thomsen-Elektronik.de Internet: www.Thomsen-Elektronik.de

### Schweden

## Bejoken AB

Box 9503 S-20039 Malmö

Tel.: +46 40 227 800 Fax: +46 40 949 900 Mail: info@bejoken.se Internet: www.bejoken.se

### Niederlande

### **Intronics BV**

Postfach 123 NL-3770 AC Barneveld

Tel.: +31 34 240 7080 Fax: +31 34 241 2114 Mail: sales@intronics.nl Internet: www.intronics.nl

# Österreich

#### JIC Warenvertriebs-Gesellschaft m.b.H

Theresianumgasse 13 A-1040 Wien

Tel.: +43 1 812 2739

Fax: +43 1 812 1081

Mail: office@jic-trading.com Internet: www.jic-trading.com



# **Frankreich**

#### Atherm'elec

328 route de la Verpillière 38290 Frontonas

+33 6 17013861 +33 474 94 19 89 atherm-elec@alutronic.fr

## **Finnland**

## Q-Flex O.Y.

Poikojankuja 2 FIN-21360 Lieto

Tel.: +35 824 89 45 10 Fax: +35 824 89 45 05 Mail: q-flex@q-flex.fi Internet: www.q-flex.fi

## **Großbritannien**

## **OSCO Limited**

Avant Business Centre Third Avenue, Bletchley Milton Keynes, MK1 1DR

Tel.: +44 1908 376 688 Fax: +44 1908 379 916 Mail: sales@osco.uk.com Internet: www.osco.uk.com

#### Israel

# Ryt Electronics Agencies Ltd.

12 Hamefalsim st, P.O. Box 689 IL-49106 Petach Tikva

Tel.: +972 3 924 6729 Fax: +972 3 924 1040 Mail: info@ryt.co.il Internet: www.ryt.co.il

### Polen

## **Dacpol Co.Ltd**

Pulawska str. 34 PL-05-500 Piaseczno

Tel.: +48 22 7035100 Fax: +48 22 7035101

Mail: dacpol@dacpol.com.pl Internet: www.dacpol.com.pl

# **Norwegen**

## **EG Components Norway AS**

Hoffsveien 17 NO-0275 Oslo

Tel.: +47 23 254 600 Fax: +47 23 254 601

Mail: info@egelectronics.com Internet: www.egelectronics.com







| Тур                    | Seite    | Тур             | Seite      | Тур                                | Seite | Тур                        | Seite    |
|------------------------|----------|-----------------|------------|------------------------------------|-------|----------------------------|----------|
| A                      |          | FI 345/30/SE    | 90         | MCU 8                              | 141   | PO75-50-35-AL              | 106      |
| AK 350/10/SE           | 75       | FI 347/30/SE    | 90         | MCU 9                              | 141   | POR 40-10-AL               | 111      |
| AK 352/15/SE           | 75       | FI 347/30/SN    | 79         | MCU 10                             | 141   | POR 40-20-AL               | 111      |
| AO 471                 | 130      | FI 349/18/SE    | 89         | Multi-Tool *Clips*                 | 142   | POR 50-10-AL               | 112      |
| AO 472                 | 129      | FI 349/30/SE    | 89         | P                                  |       | POR 50-20-AL               | 112      |
| AO 474                 | 130      | FI 351/30/SE    | 90         | PA 700 PA 701                      | 136   | POR 28,5-6,5-AL            | 110      |
| AO 475                 | 129      | FI 351/30/SN    | 78         | PA 800                             | 136   | POR 28,5-18,5-AL           | 110      |
| AO 478                 | 131      | FI 353/SE       | 89         | PG                                 | 94    | POR 32,5-10-AL             | 110      |
| AO 479                 | 130      | FI 353/SN       | 78         | 2020/10/SE/SF                      |       | POR 32,5-20-AL             | 110      |
| AO 480                 | 131      | FI 355/11/SE    | 91         | PG 2828/8/SE/SF                    | 95    | POR 36,5-10-AL             | 111      |
| С                      |          | FI 355/19/SE    | 91         | PG                                 | 95    | POR 36,5-20-AL             | 111      |
| CK 632/SE              | 88       | FI 356/SE       | 93         | 3030/10/SE/SF                      |       | PR 5/15/SE/M3              | 74       |
| CK 633/SE              | 88       | G               |            | PG                                 | 95    | PR 5/25/SE/LS              | 83       |
| CK 932                 | 88       | GL 510          | 128        | 3535/10/SE/SF                      |       | PR 5/25/SE/M3              | 74       |
| CK 960/20/SE           | 83       | GL 530          | 127        | PO 10-10-6,5-AL                    | 100   | PR 6/26/SE/LS              | 83       |
| CK 960/35/SE           | 83       | GL 535/N        | 127        | PO 10-10-12,5-AL                   | 100   | PR 7/8,5/SE                | 94       |
| CK 970                 | 78       |                 |            | PO 14-14-6-AL                      | 100   | PR 8                       | 28       |
| CK 980/SE              | 88       | IK 550          | 132        | PO 14-14-10-AL                     | 100   | PR 8/33/SE                 | 94       |
| CK 985/SN              | 80       | IK 553          | 132        | PO 17-17-15-AL                     | 101   | PR 8/37/SE                 | 94       |
| CK 990/SN              | 80       | IL 555/25       | 133        | PO 17-17-25-AL                     | 101   | PR 8/47/SE                 | 94       |
| F                      |          | IL 555/30       | 133        | PO 18-18-6,5-AL                    | 101   | PR 8/51/SE                 | 94       |
| FE 372/6/AL            | 92       | IL 557/35       | 133        | PO 18-18-12,5-AL                   | 101   | PR 8/6,3/SE                | 94       |
| FE 372/8/AL            | 92       | IS 560          | 134        | PO 25-25-10-AL                     | 102   | PR 10/11/SE                | 73       |
| FE 372/10/AL           | 92       | IS 561          | 134        | PO 25-25-6,5-AL                    | 102   | PR 13/40/SE                | 74       |
| FI 300/SE              | 91       | IS 565          | 134        | PO 25-25-12,5-AL                   | 102   | PR 15/35/SE                | 73       |
| FI 300/SN              | 79       | IS 570          | 135        | PO 25-25-18,5-AL                   | 102   | PR 16/35/SE                | 74       |
| FI 302/SE              | 92       | IS 580          | 135        | PO 30-30-13-AL                     | 103   | PR 17/15/SE                | 73       |
| FI 302/SN              | 80       | IS 585          | 135        | PO 30-30-33-AL                     | 103   | PR 17/25/SE                | 73       |
| FI 303/SE              | 92       | L               |            | PO 36-36-10-AL                     | 103   | PR 17/35/II/SE             | 73       |
| FI 303/SN              | 80       | LK 10/200/A     | 117        | PO 36-36-20-AL                     | 103   | PR 17/35/SE                | 73       |
| FI 306/SE              | 89       | LK 20/200/A     | 117        | PO 40-40-10-AL                     | 104   | PR 17/50/SE                | 72       |
| FI 306/SN              | 78       | LK 30/200/A     | 118        | PO 40-40-20-AL                     | 104   | PR 18/15/SE                | 74       |
| FI 307/SE              | 91       | LK 40/200/Q     | 118        | PO 45-45-10-AL                     | 104   | PR 18/25/SE                | 74       |
| FI 307/SN              | 79       | M               | 170        | PO 45-45-20-AL                     | 104   | PR 18/35/SE                | 74       |
| FI 308/SE              | 91       | MC 28           | 139        | PO 50-50-20-AL                     | 105   | PR 19/20/SE                | 93       |
| FI 308/SN              | 79       | MC 31           | 139        | PO 50-50-25-AL                     | 105   | PR 19/35/SE                | 93       |
| FI 309/45/SE           | 81       | MC 32           | 139        | PO 50-50-25-AL-1<br>PO 50-50-45-AL |       | PR 19/50/SE<br>PR 20       | 93       |
| FI 309/30,2/SE         | 81<br>76 | MC 33<br>MC 725 | 140<br>138 | PO 75-50-15-AL                     | 105   |                            | 22<br>93 |
| FI 310/SE<br>FI 311/SE | 76       | MC 726          | 138        | PO 98-98-20-AL                     | 106   | PR 21/20/SE<br>PR 21/35/SE | 93       |
| FI 321/SE              | 76       | MC 740          | 140        | PO 98-98-40-AL                     | 106   | PR 21/50/SE                | 93       |
| FI 322/SE              | 76       | MC 747          | 140        | PO 100-75-15-AL                    | 100   | PR 22                      | 23       |
| FI 326/SE              | 81       | MC 773          | 139        | PO 100-75-35-AL                    | 107   | PR 23                      | 22       |
| FI 327/SE              | 82       | MC 780          | 140        | PO 100-100-15-AL                   | 107   | PR 25                      | 23       |
| FI 328/SE              | 92       | MC 782          | 141        | PO 100-100-35-AL                   | 107   | PR 27                      | 22       |
| FI 329/SE              | 82       | MC 786          | 141        | PO 120-60-25-AL                    | 108   | PR 28/25/MC                | 84       |
| FI 330/SE              | 82       | MC 797          | 138        | PO 120-60-45-AL                    | 108   | PR 28/25/MC/IR             | 84       |
| FI 331/SE              | 82       | MCU 1           | 141        | PO 130-100-35-AL                   | 108   | PR 28/25/SE                | 84       |
| FI                     | 77       | MCU 2           | 141        | PO 130-100-35-                     | 108   | PR 28/25/SE/IR             | 84       |
| 340/31,8/SL/TO3        | , ,      | MCU 3           | 141        | AL-1                               | . 3 0 | PR 28/38/MC                | 84       |
| FI 342/SE              | 81       | MCU 4           | 141        | PO 200-120-40-                     | 109   | PR 28/38/MC/IR             | 84       |
| FI 343/SE              | 81       | MCU 5           | 141        | AL                                 | , -   | PR 28/38/SE                | 84       |
| FI 344/SE              | 89       | MCU 6           | 141        | PO 200-120-40-                     | 109   | PR 28/38/SE/IR             | 84       |
| FI 345/18/SE           | 90       | MCU 7           | 141        | AL-1                               |       | PR 28/50/MC                | 84       |

| Тур              | Seite | Тур              | Seite    | Тур              | Seite  | Тур                    | Seite  |
|------------------|-------|------------------|----------|------------------|--------|------------------------|--------|
| PR 28/50/MC/IR   | 84    | PR 48            | 29       | PR 159           | 31     | PR 257                 | 56     |
| PR 28/50/SE      | 84    | PR 50            | 29       | PR 160           | 38     | PR 268                 | 18     |
| PR 28/50/SE/IR   | 84    | PR 65            | 24       | PR 160           | 34     | PR 287                 | 37     |
| PR 28/63/MC      | 84    |                  | 25       |                  |        |                        |        |
|                  |       | PR 90            |          | PR 162           | 39     | PR 289                 | 30     |
| PR 28/63/MC/IR   | 84    | PR 93            | 26<br>27 | PR 163           | 41     | PR 290                 | 16     |
| PR 28/63/SE      | 84    | PR 95<br>PR 100  | 26       | PR 164<br>PR 165 | 48     | PR 290/94/SE<br>PR 292 | 68     |
| PR 28/63/SE/IR   |       |                  |          | PR 165           | 43     |                        |        |
| PR 29/25/SE/LS   | 83    | PR 101           | 16       |                  | 45     | PR 292/94/SE/M3        |        |
| PR 31/38/MC      | 85    | PR 101/94/SE/M3  | 68       | PR 167           | 35     | PR 293                 | 19     |
| PR 31/38/MC/IR   | 85    | PR 103           | 43       | PR 168           | 32     | PR 293/94/SE           | 70     |
| PR 31/38/SE      | 85    | PR 113           | 57       | PR 169           | 40     | PR 296                 | 31     |
| PR 31/38/SE/IR   | 85    | PR 116           | 17       | PR 170           | 44     | PR 297                 | 35     |
| PR 31/50/MC      | 85    | PR 116/94/SE/    | 68       | PR 171           | 49     | PR 298                 | 50     |
| PR 31/50/MC/IR   | 85    | M2,5             | 1.0      | PR 172           | 39     | PR 300                 | 50     |
| PR 31/50/SE      | 85    | PR 118           | 16       | PR 173           | 34     | PR 304                 | 49     |
| PR 31/50/SE/IR   | 85    | PR 118/94/SE/M3  | 68       | PR 174           | 40     | PR 310                 | 39     |
| PR 31/63/MC      | 85    | PR 119           | 17       | PR 175           | 46     | PR 312                 | 30     |
| PR 31/63/MC/IR   | 85    | PR 125           | 23       | PR 176           | 35     | PR 313                 | 30     |
| PR 31/63/SE      | 85    | PR 126           | 21       | PR 177           | 49     | PR 314                 | 32     |
| PR 31/63/SE/IR   | 85    | PR 126/94/SE/M3  | 72       | PR 178           | 50     | PR 325                 | 46     |
| PR 32/25,4/MC    | 86    | PR 127           | 17       | PR 181           | 32     | PR 327                 | 53     |
| PR 32/25,4/MC/IR | 86    | PR 127/94/SE     | 69       | PR 182           | 33     | PR 328                 | 43     |
| PR 32/25,4/SE    | 86    | PR 128           | 24       | PR 186           | 48, 55 | PR 331                 | 36     |
| PR 32/25,4/SE/IR | 86    | PR 129           | 26       | PR 189           | 45     | PR 360                 | 49     |
| PR 32/38,1/MC    | 86    | PR 130           | 25       | PR 192           | 27     | PR 362                 | 27     |
| PR 32/38,1/MC/IR | 86    | PR 131           | 25       | PR 193           | 33     | PR 365                 | 57     |
| PR 32/38,1/SE    | 86    | PR 132           | 20       | PR 198           | 25     | PR 367                 | 32, 51 |
| PR 32/38,1/SE/IR | 86    | PR 133           | 20       | PR 199           | 42     | PR 368                 | 55     |
| PR 32/50,8/MC    | 86    | PR 133/94/SE/M3  | 71       | PR 199/94/SE     | 69     | PR 369                 | 38     |
| PR 32/50,8/MC/IR |       | PR 134           | 21       | PR 201           | 46     | PR 370                 | 43, 53 |
| PR 32/50,8/SE    | 86    | PR 134/75/SE/M3  | 72       | PR 210           | 58     | PR 371                 | 41     |
| PR 32/50,8/SE/IR | 86    | PR               | 72       | PR 211           | 35     | PR 372                 | 47     |
| PR 33/25,4/MC    | 87    | 134/37,5/SE/M3   |          | PR 213           | 34     | PR 373                 | 36     |
| PR 33/25,4/MC/IR | 87    | PR 135           | 21       | PR 221           | 58     | PR 374                 | 47     |
| PR 33/25,4/SE    | 87    | PR 135/75/SE/M3  | 72       | PR 223           | 58     | PR 375                 | 44     |
| PR 33/25,4/SE/IR | 87    | PR               | 72       | PR 227           | 58     | PR 376                 | 48     |
| PR 33/38,1/MC    | 87    | 135/37,5/SE/M3   |          | PR 228           | 36     | PR 377                 | 37     |
| PR 33/38,1/MC/IR | 87    | PR 136           | 17       | PR 233           | 21     | PR 378                 | 37     |
| PR 33/38,1/SE    | 87    | PR 136/94/SE/M 3 | 69       | PR 233/94/SE     | 71     | PR 379                 | 41     |
| PR 33/38,1/SE/IR | 87    | PR 137           | 18       | PR 234           | 19     | PR 380                 | 47     |
| PR 33/50,8/MC    | 87    | PR 137/94/SE/M3  | 70       | PR 234/94/SE     | 71     | PR 381                 | 37     |
| PR 33/50,8/MC/IR | 87    | PR 138           | 19       | PR 235           | 45     | PR 382                 | 42     |
| PR 33/50,8/SE    | 87    | PR 138/94/SE/M3  | 70       | PR 236           | 44     | PR 383                 | 59     |
| PR 33/50,8/SE/IR | 87    | PR 139           | 18       | PR 237           | 47     | PR 384                 | 40     |
| PR 33/63,5/MC    | 87    | PR 139/94/SE/M 3 | 69       | PR 240           | 42     | PR 385                 | 40     |
| PR 33/63,5/MC/IR | 87    | PR 140           | 26       | PR 242           | 38     | PR 386                 | 59     |
| PR 33/63,5/SE    | 87    | PR 143           | 20       | PR 244           | 33     | PR 387                 | 41     |
| PR 33/63,5/SE/IR | 87    | PR 143/94/SE/M 3 | 71       | PR 247           | 48     | PR 388                 | 33     |
| PR 35            | 23    | PR 144           | 20       | PR 250           | 61     | PR 389                 | 29     |
| PR 36            | 29    | PR 146           | 30       | PR 252           | 54     | PR 391                 | 44     |
| PR 40            | 24    | PR 148           | 38       | PR 253           | 54     | PR 392                 | 42     |
| PR 45            | 28    | PR 149           | 45, 54   | PR 254           | 55     | PR 393                 | 52     |
| PR 46            | 28    | PR 151           | 31       | PR 255           | 55     | PR 394                 | 57     |
| PR 47            | 29    | PR 158           | 39       | PR 256           | 56     | PR 395                 | 53     |

| е           | Тур              | Seite |
|-------------|------------------|-------|
| 6           | SI 7008(-S) + SI | 126   |
| 31          | 7018(-S)         |       |
| 2<br>4<br>6 | SI 7009(-S) + SI | 123   |
| 4           | 7019(-S)         |       |
|             | U                |       |
| 51          | UP 285           | 62    |
| 51          | W                |       |
| 2           | Wärmeleitgehäuse | 61    |
| 2           | WK 800 (Hernon   | 165   |
| 2 2 3       | 746)             |       |
|             |                  |       |

| Тур                      | Seite |
|--------------------------|-------|
| PR 396                   | 46    |
| PR 398                   | 31    |
| PR 399                   | 52    |
| PR 400                   | 34    |
| PR 403                   | 36    |
| PR 715                   | 51    |
| PR 716                   | 51    |
| PR 717                   | 52    |
| PR 718                   | 52    |
| PR 719                   | 53    |
| PR 720                   |       |
| S .                      | 54    |
|                          |       |
| SB 35                    | 60    |
| SG 3400                  | 62    |
| SG 3500                  | 63    |
| SI 0,13-DS               | 120   |
| SI 0,18 und SI 0,18-     | 121   |
| S(einseitig selbst-      |       |
| klebend)                 |       |
| SI 0,23 und SI           | 121   |
| 0,23-S(einseitig         |       |
| selbstklebend)           |       |
| SI 4018(-S) + SI         | 126   |
| 4023(-S)                 |       |
| SI 480(-S) + SI          | 125   |
| 482(-S)                  |       |
| SI 485(-S) + SI          | 124   |
| 483(-S)                  |       |
| SI 487(-S) + SI          | 124   |
| 498(-S)                  | 100   |
| SI 488(-S) + SI          | 122   |
| 489(-S)                  | 105   |
| SI 490(-S) + SI          | 125   |
| 495(-S)                  | 125   |
| SI492(-S) +<br>SI493(-S) | 123   |
| SI 497(-S) + SI          | 125   |
| 499(-S)                  | 123   |
| SI 6018(-S) + SI         | 126   |
| 6023(-S)                 | 120   |
| SI 7001(-S) + SI         | 122   |
| 7011(-S)                 | 122   |
| SI 7002(-S) + SI         | 122   |
| 7012(-S)                 |       |
| SI 7003(-S) + SI         | 123   |
| 7013(-S)                 |       |
| SI 7004(-S) + SI         | 123   |
| 7014(-S)                 |       |
| SI 7005(-S) + SI         | 123   |
| 7015(-S)                 |       |
| SI 7006(-S) + SI         | 124   |
| 7016(-S)                 |       |
| SI 7007(-S) + SI         | 124   |
| 7017(-S)                 |       |
|                          |       |